

DESIGN & ENGINEERING GUIDE

PUB19MAY22

н

Table of Contents

Getting Started - How to Use this Guide	. 1
Introduction	. 2
Installers Responsibility/Disclaimer	. 3
Design Methodology	.4
Project Requirements & Design Aids	. 5
Prescriptive Design Method - Quick Design Steps	. 6
Analytical Method - ASCE 7-05	. 8
Analytical Method - ASCE 7-10	. 15
Prescriptive Pressure Tables	. 22
System Application Rules	. 26
System Layout Rules	. 28
Technical Support	. 31
Appendix	. 32

HOW TO USE THIS GUIDE 1 DESIGN & ENGINEERING GUIDE PAGE

Getting Started - How to Use this Guide

Areas of Interest for Designers/Developers:

System Components (Installation Guide) Module Compatibility (Installation Guide) Design Methodology Project Requirements & Design Aids Prescriptive Design Method - Quick Design Steps ASCE 7-05 Analytical Method ASCE 7-10 Analytical Method Prescriptive Pressure Tables System Application Rules System Layout Rules Installation Guide

Areas of Interest for Installers:

System Components Installer Responsibility/Disclaimer Installation Guide

Areas of Interest for AHJ/Building Officials)

System Components (Installation Guide) Module Compatibility (Installation Guide) Prescriptive Design Method - Quick Design Steps ASCE 7-05 Analytical Method ASCE 7-10 Analytical Method Prescriptive Pressure Tables System Application Rules System Layout Rules Grounding & Bonding (Installation Guide) Sample Calculation (Appendix)

Introduction

SunFrame MicroRail (SFM) by Unirac, Inc. offers a fully integrated, solar racking solution for residential sloped roofs. SFM empowers system installers by providing pre-assembled components with integrated bonding and innovative installation features, while eliminating long rails and loose hardware. System designers are equipped with Unirac's proven user friendly online desing tool, prescriptive tables, and easy to follow design steps, to create code compliant designs and complete bill of material outputs.

SFM is developed specifically for use as a "flush to roof" photovoltaic solar racking system to pitched roofs for 60-cell modules only. Unirac, Inc. also has racking product solutions for ballasted, flat roof, rail based flush to roof, and rail based tilted racking solutions. To learn more about our racking options, go to www.unirac.com.

SFM SUN FRAME MICRORAI

INSTALLERS RESPONSIBILITY DESIGN & ENGINEERING GUIDE PAGE

Installers Responsibility

Please review this guide thoroughly before installing your SunFrame MicroRail system. This guide provides supporting documentation for building permit applications, planning and assembly the SunFrame MicroRail System.

The installer is solely responsible for:

- Complying with all applicable local or national building codes, including code requirements that are more strenuous than the guidelines set forth in this manual;
- Maintaining and enforcing all aspects of a safe working environment;
- Ensuring that Unirac and other products are appropriate for the particular installation and the installation environment.
- Ensuring that the roof, its rafters, connections, and any other structural support members can support the array under all code level loading conditions (this total building assembly is referred to as the building structure);
- Using only Unirac parts and installer-supplied parts as specified by Unirac (substitution of parts may void the warranty and invalidate the letters of certification in all Unirac publications);
- Ensuring that lag screws have adequate pullout strength and shear capacities as installed;
- Verifying the strength of any alternate mounting if used in lieu of the lag screws;
- Maintaining the waterproof integrity of the roof, including selection and proper installation of appropriate flashing;
- Ensuring safe installation of all electrical aspects of the PV array, including proper grounding/bonding;
- Array shading and output analysis;
- Ensuring correct and appropriate design parameters are used in determining the design loading used for design of the specific installation. Parameters, such as snow loading, wind speed, exposure, and topographic factor should be confirmed with the local building official or a licensed professional engineer.

Unirac shall not be liable for any losses, damages, or injuries that directly or indirectly result from any non-conformance with the above.

Design Methodology

SunFrame MicroRail was designed using the Minimum Design Loads for Buidings and Other Structures by the American Society of Civil Engineers and Structural Engineering Institute, 2005 and 2010 editions. These are referred to as ASCE/SEI 7-05 and ASCE/SEI 7-10, respectively. Analytical desing steps for both ASCE/SEI 7-05 and ASCE/SEI 7-10 are provided in this guide to demonstrate our interpretation of these codes and outline our design methodology as it applies specifically to the SunFrame MicroRail product. A sample calculation can be found in Appendix E. Three methods have been provided to aid in design of your project. When to use each method is discussed in the project requirements & Design Aids section on the following page.

<u>Note:</u> Please review Table 1 in the Project Requirements and Deisgn Aids section of this Guide to choose the appropriate design aid. Unirac's online desing tool is highly recommended for all projects. It will provide you with a Bill of Materials, Certification Letter, and Calculations for your project.

Project Requirements and Design Aid

Table 1 - Project Requirements & Design Aid						
Project Requireme Blank Cells for Project Specific Input Provide)	nts d for your Convenience)	Design Aid				
Project Name: Project Address: AHJ (Authority Having Jurisdiction):		Online Design Tool ^{1a}	Prescriptive Design Method ^{1b}	Do It Yourself ^{1c} (Analytical Method)		
Current Adopted Building Code: Local Jurisdiction Code Amendments:		ASCE 7-05/ASCE 7-10	ASCE 7-05/ASCE 7-10	ASCE 7-05/ASCE 7-10		
Occupancy/Risk Category*:		Π	=	As Permitted by Code		
Basic Wind Speed*:		85-170 mph	***85-150mph/110- 190mph	As Permitted by Code		
Wind Exposure Category*:		B,C or D	B, C or D	As Permitted by Code		
Ground Snow Load*:		0-60 psf	***	As Permitted by Code		
Seismic Coefficient, Ss*:		<3.1g	<3.1g	As Permitted by Code		
Roof Height (Eave & Ridge)*:		15, 30 or 60 feet	15, 30 or 60 feet	As Permitted by Code		
Roof Slope*:		0-45 Degrees	0-45 Degrees	As Permitted by Code		
Roof Zone(s)*:		1, 2, or 3	1, 2, and 3	As Permitted by Code		
Framed Module Type & Module*:		Appendix	Appendix	User Input		
Module Weight*:		2.094psf - 3.056psf	2.094psf - 3.056psf	User Input		
Module Width*:		39in - 41in	39in - 41in	User Input		
Total Module Quantity*:		Up to 500	No Size Limit	User Input		
Design Method:		Allowable S	tress Design	Unlimited**		
Project Specific Calcu	Ilations for Solar System Provided:	Yes	No	No		
Stamped/Certified Engineering	Letter for Solar System Provided:	Yes	Yes	No		
Bill of Materials for Unirac Com	ponents of Solar System Provided:	Yes	No	No		

* Requirements must fall within defined range to utilize specified design aide. ** The design professional could use the appropriate code method to perform the design in LRFD, LSD, or ASD. *** Prescriptive Pressure tables located in this guide on pgs. 22-25, in Appendix B and Online. 1a. This is an easy-to-use online design tool that is recommended for all preliminary and final designs, estimating, and layout validation. It is located on our website at www.unirac.com. The Online Design Tool allows for a customized project design that results in a final design, bill of materials, price quote and stamped/certified engineering approval letters. 1b. Prescriptive Design Method: This method is a simplified-analytical approach to the design of your SFM project. This method is recommended when computers or internet access is not available. Once project specific requirements are known, the project design load pressures can be looked up in the Prescriptive Tables ((4) located in this guide on pgs. 22-25 and (10)located in Appendix B). If additional tables are needed, they can be found online at www.unirac.com. Once the load pressures (by roof zone) have been identified, they are color coded to the appropriate application and layout rules. 1c. Do It Yourself (Analytical Method): This design approach follows the ASD calculations step by step through both the ASCE 7-05 and 7-10 design codes. Equations, figures, tables, and commentary are provided for your convenience to aid in generating the specific design load pressures for your loading conditions, such as wind and snow. This method has been provided for design or layout requirements that fall outside of the other two options or for design professionals that prefer to create their own calculation packages.

SFM SUN FRAME MICRORAIL

PRESCRIPTIVE DESIGN METHOD DESIGN & ENGINEERING GUIDE PAGE

Prescriptive Design Method - Quick Design Steps

Step 1: Define Project Requirements

- a. Fill in the Table 1 Project Requirements & Design Aid
- b. Once project specific information is determined, confirm that the prescriptive design method may be utilized.
- c. Review the Prescriptive Tables in the Appendix to see if they meet your needs. If a more precise design is needed (if the tables in the Appendix don't meet your project requirements, but per Table 1, you can still utilize the Perscriptive Design Method) please utilize the online tool for design.

Step 2: Create Initial Array Layout

- a. Identify the structural supporting members of your building. A sketch/drawing of the roof with location of supporting members, vents, skylights, cable/wires, areas to avoid, etc., is highly recommended.
- b. Create a "rough draft" layout of solar modules on the actual project roof. (Refer to System Application & Layout Rules pgs. 26-28)

Step 3: Determine Array Design Pressure by Roof Zone

- a. Use information in steps 1 & 2 and go to the prescriptive pressure tables, in the Appendix B.
- b. Use fill-in boxes below to document your project specific pressures and tables utilized.

Note: Not all prescriptive pressure tables have been included in the appendix. If your project specific pressures are unavailable, the following steps should be followed; a) Go to www.unirac.com and access the SFM design tool. b) input your project specific requirements. c) design pressures will be generated for you based on your project specific inputs. d) these pressures (by roof zone) will be used to follow through the remaining steps below.

PRESCRIPTIVE DESIGN & ENGINEERING GUIDE PAGE

Prescriptive Design Method - Quick Design Steps (Continued)

c. Record the SunFrame Micro Rail Rules:

Can Consecutive Spans be Utilized per the Rules?

Step 4: Look-up Layout and Attachment Guidelines for Array

a. Review your layout in Step 2 above, the rules as recorded in Step 3c above, and the System Application & Layout Rules to determine potential attachment points to your structure and if additional support will be required to support your system.

Step 5: Define Grounding & Bonding Path

a. Refer to the Installation Guide for how to determine the Grounding and Bonding Path.

SFM SUN FRAME MICRORAIL

ANALYTICAL METHOD ASCE 7-05 Design & Engineering Guide Page

Analytical Method - ASCE 7-05

Step 1: User Inputs (ASCE 7-05)

	Notes / Clarifications:
Roof Height (ft):	Mean roof height (15 ft, 30 ft, or 60 ft)
Doof Apalo (dogroos);	Convert roof pitch to angle in degrees
Roof Angle (degrees).	[See Appendix C]
Basic Wind Speed (MPH):	Per Basic Wind Speed-US Map (ASCE 7-05, Figure 6-1)
	Determine the Exposure Category (B, C or D) by using the
Wind Exposure Category:	definitions for Surface Roughness Categories (ASCE 7-05,
	Sections 6.5.6.2 and 6.5.6.3)
Roof Zone:	Determine the Roof Zone (1, 2 or 3) (ASCE 7-05, Figure 6-3)
Ground Snow Load (not)	P _g = Ground Snow Load in PSF. Ground Snow Loads
	(ASCE 7-05, Figure 7-1)
Seismic Factor S _s (g):	ASCE 7-05 (Figures 22-1 through Figure 22-14)
Roof Live Load ¹ (psf):	0 PSF, 20 PSF, etc.
Module Manufacturer/Type:	
Solar Module Length (in):	
Solar Module Width (in):	
Solar Module Weight (lb):	
Module Dead Load (psf):	

Commentary:

1) Most Building Officials allow for all or a portion of the roofs original live load design load to be removed/reduced at the time that solar panels are being added to the roof. The rationale behind this is that live load or roof foot traffic is eliminated or reduced to designated paths. in other words, the roof top solar array and live load foot traffic cannot occupy the same space. If all of the roof live load can be utilized by the proposed solar array, 0 PSF should be entered.

SFM SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE PAGE

Step 2: Wind Pressure (ASCE 7-05, Chapter 6)

Calculate the wind pressure for uplift and downforce, using ${\rm GC}_{\rm pn}$ & ${\rm GC}_{\rm pp}$ respectively, in the provided boxes.

Wind Pressure Equation - Method 2 - Analytical Method (ASCE 7-05, Section 6.5):

$P_p=q_h (GC_{pp}-GC_{pi})$ (ASCE 7-05, Section 6.5.12.4.1) (GC _{pp} - Positive Downforce Factor)
P _n =q _h (GC _{pn} -GC _{pi}) (ASCE 7-05, Section 6.5.12.4.1) (GC _{pn} - Negative Uplift Factor)
GC _{pi} equals zero (per AC428, November 2012) (internal pressure coefficient)
GC _p is defined below (ASCE 7-05 Figure 6-11) and is a function of the roof
zone, effective wind area (feet squared), and roof angle (degrees) (external
pressure coefficient)
GC _{pp} (Positive downforce factor)
GC _{pn} (Negative uplift factor)
(ASCE 7-05, Figure 6-11B) for roof angles ≤ 7°
(ASCE 7-05, Figure 6-11C) for roof angles > 7° and \leq 27°
(ASCE 7-05, Figure 6-11D) for roof angles > 27° and \leq 45°
$q_h = q_z$
$q_z=0.00256K_z*K_{d}*V^2*I$ (ASCE 7-05, Section 6.5.10)
K _z Velocity Pressure Coefficient (ASCE 7-05, Table 6-3)
Topographic Factor
(ASCE 7-05, Section 6.5.7.2 & Figure 6-4)
K _d Directionality Factor (ASCE 7-05, Table 6-4)
V Basic Wind Speed in MPH from User Inputs in Step 1
I Importance Factor ² (ASCE 7-05, Table 6-1)

Commentary:

2) Typical values for the Importance Factor are 0.87 based on Occupancy Category I and 1.0 based on Occupancy Category II. Occupancy I is defined by ASCE 7-05 to mean "Buildings and other structures that present a low hazard to human life in the event of failure...".

SFM SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE PAGE

Step 3: Dead Load

Calculated Ps (Sloped roof snow load) in the provided boxes.

Commentary:

3)To be combined with the module dead load and used in wind load combinations.

4)The ground snow load is utlilized to calculate the roof snow load, which is the load applied to the structure.

5) From Section C7.8 of ASCE 7-05, "the collectors should be designed to sustain a load calculated by using the "unobstructed slippery surfaces" curve in Fig. 7-2a". This graph recommends the use of a C_t value of less than or equal to 1.0.

6) The Snow Importance Factor for Occupancy Category I = 0.8 and for Occupancy Category II = 1.0.

Calculated Dead Load in the provided boxes.

Step 4: Snow Load (ASCE 7-05, Chapter 7)

Sloped Roof Snow Load Pressure Equation:

 $P_s=0.7*C_s*C_e*C_t*I*P_q$ (ASCE 7-05, Section 7.3)

- Ground Snow Load⁴ (psf) from User inputs in Step 1.
- Slope Factor (ASCE 7-05, Figure 7-2)
- Thermal Factor⁵ (ASCE 7-05, Table 7-3)
- Importance Factor⁶ (snow) (ASCE 7-05, Table 7-4)
- Exposure Factor (ASCE 7-05, Table 7-2)

SFM SUN FRAME MICRORAL

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE 11 PAGE

Step 5: Seismic Load (ASCE 7-05)

Calculate seismic loads for both horizontal and vertical in the provided boxes.

Seismic Load Equation (Horizontal):

Seismic Load Equation (Vertical):

Commentary:

7) The Component Amplification Factor (ap) for flushmount systems should be taken as 1.0 (AC428, Section 3.1.3.3).

8) The Component Response Modification Factor (Rp) for flush-mounted systems should be taken as 1.5 (AC428, Section 3.1.3.3).

9) The Seismic Importance Factor for Occupancy Categories I and II = 1.0.

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE 12 PAGE

Step 6: Rewrite Your Loads

*Depending on your coordinate system, certain loads will need to be split into their horizontal and vertical components.

Total Dead Load:	psf
Wind Pressure Up:	psf
Wind Pressure Down:	psf
Snow Load:	psf
Seismic Load Horizontal:	lbs
Seismic Load Vertical:	psf

Step 7: Load Combinations (ASCE 7-05, Chapter 2, Section 2.4.1)

*The load combinations below have been identified as the likely controling cases for the roof structure.

1) D 8) D + 0.75(0.7E) + 0.75Lr D = Dead Load 9) D + 0.75(0.7E) + 0.75S 2) D + L_r L_r = Live Load to Roof 3) D + S 10) D + 0.7E S = Snow Load 4) D + W_{up} W_{up} = Wind Load Up 11) 0.6D + W_{up} 12) 0.6 D + W_{down} W_{down} = Wind Load Down 5) D + W_{down} 6) D + 0.75W_{down} + 0.75S 13) 0.6 D + 0.7E E = Earthquake/Seismic Load 7) D + 0.75W_{down} + 0.75Lr

Step 8: Create Initial Array Layout

- Identify the structural supporting members of your building. A sketch/drawing of the roof/building with location of supporting a. members, vents, skylights, cable/wires, areas to avoid, etc., is highly recommended.
- b. Create a "rough draft" layout of solar modules on the actual project roof. (Refer to System Application & Layout Rules)

SFM SUN FRAME MICRORAIL

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE PAGE

Step 9: Determine Array Design Pressure by Roof Zone

- a. Using information in steps 1 & 2 and go to the prescriptive pressure tables, in the Appendix B.
- b. Use fill-in boxes below to document your project specific pressures and tables utilized.

Note: Not all prescriptive pressure tables have been included in the appendix. If your project specific pressures are unavailable, the following steps should be followed; a) Go to www.unirac.com and access the SFM design tool. b) input your project specific requirements. c) Design pressure will be generated for you based on your project specific inputs. d) these pressures (by roof zone) will be used to follow through the remaining steps below.

Controlling Pressure:

	Up (psf)	Down (psf)	Down Slope (psf)	Lateral (psf)	Rule*
Roof zone 1:					
Roof zone 2:					
Roof zone 3:					

*Record the rule with the highest number in this column of cells. For example, if the rule for Up is 1, Down is 2, Side is 1, and Lateral is 3 across a row (roof zone), input and utilize Rule 3 as stated in the Appendix.

c. Record the SunFrame Micro Rail Rules:

Interior Rows:	Overhang	Span	North Row:	Overhang	Span
			-		

Can Consecutive Spans be Utilized per the Rules?

SFN SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-05 DESIGN & ENGINEERING GUIDE 14 PAGE

Step 10: Look-up Layout and Attachment Guidelines for Array

a. Review your layout in Step 8 above, the rules as recorded in Step 9c above, and the System Application & Layout Rules to determine potential attachment points to your structure and if additional support will be required to support your system.

Step 11: Determine Load to the Roof

- a. To determine the load on the roof through the attachment:
 - i. Determine the tributary area to each attachment.
 - ii. Review the controlling pressure in Steps 6 and 7.
 - iii. Determine pressure zones on the roof per the layout and attachment guidelines in the Installation Guide.
 - iv. Multiply the tributary area by the roof pressure to obtain loads to the roof attachment.
 - v. Determine the point load to the roof at each attachment.
 - vi. Appendix E contains a sample calculation for reference.

Step 12: Check Roof Load

a. Ensure that the supporting structure is capable of withstanding the additional loads imposed by the proposed solar system.

Step 13: Define Grounding & Bonding Path

a. Refer to the Installation Guide for how to determine the Grounding and Bonding Path.

SFM SUN FRAME MICRORAIL

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Analytical Method - ASCE 7-10

Step 1: User Inputs (ASCE 7-10)

	Notes / Clarifications:
Roof Height (ft):	Mean roof height (15 ft, 30 ft, or 60 ft)
Doof Angle (dogroos):	Convert roof pitch to angle in degrees
Roof Angle (degrees).	[See Appendix C]
Basic Wind Speed (MPH):	Per Basic Wind Speeds for Kisk Category I (ASCE 7-10,
	Determine the Exposure Category (B, C or D) by using the
Wind Exposure Category:	definitions for Surface Roughness Categories (ASCE 7-10,
	Sections 26.7.2 and 26.7.3)
Roof Zone:	Determine the Roof Zone (1, 2 or 3)(ASCE 7-10, Figure 30.5-1)
Cround Snow Load (not)	Pg = Ground Snow Load in PSF. Ground Snow Loads
Ground Show Load (psr):	(ASCE 7-10, Figure 7-1)
Seismic Factor S _s (g):	ASCE 7-10 (Figures 22-1, 22-3, 22-25 and 22-6)
Roof Live Load ¹ (psf):	0 PSF, 20 PSF, etc.
Module Manufacturer/Type:	
Solar Module Length (in):	
Solar Module Width (in):	
Solar Module Weight (lb):	
Module Dead Load (psf):	

Commentary:

1) Most Building Officials allow for all or a portion of the roofs original live load design load to be removed/reduced at the time that solar panels are being added to the roof. The rationale behind this is that live load or roof foot traffic is eliminated or reduced to designated paths. in other words, the roof top solar array and live load foot traffic cannot occupy the same space. If all of the roof live load can be utilized by the proposed solar array, 0 PSF should be entered.

SFM SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Step 2: Wind Pressure (ASCE 7-10, Chapter 30)

Calculate the wind pressure for uplift and downforce, using ${\rm GC}_{\rm pn}$ & ${\rm GC}_{\rm pp}$ respectively, in the provided boxes.

Wind Pressure Equation - Components & Cladding (ASCE 7-10, Section 30.4.2):

$P_p=q_h (GC_{pp}-GC_{pi})$ (ASCE 7-10, Section 30.4.2) (GC _{pp} - Positive Downforce Factor)
P _n =q _h (GC _{pn} -GC _{pi}) (ASCE 7-10, Section 30.4.2) (GC _{pn} - Negative Uplift Factor)
GC _{pi} equals zero (per AC428, November 2012) (internal pressure coefficient) GC _p is defined below (ASCE 7-05 Figure 6-11) and is a function of the roof zone, effective wind area (feet squared), and roof angle (degrees) (external pressure coefficient)
GC _{pp} (Positive downforce factor)
GC _{pn} (Negative uplift factor)
(ASCE 7-10, Figure 30.4-2A) for roof angles ≤ 7°
(ASCE 7-10, Figure 30.4-2B) for roof angles > 7° and \leq 27°
(ASCE 7-10, Figure 30.4-2C) for roof angles > 27° and \leq 45°
$q_h = qz$
q _z =0.00256*K _z *K _z *K _d *V^2 (ASCE 7-10, Section 30.3.2)
K _z Velocity Pressure Coefficient (ASCE 7-10, Table 30.3-1)
K _{zt} Topographic Factor (ASCE 7-10, Section 26.8 & Figure 26.8- 1)
K _d Directionality Factor (ASCE 7-10, Table 26.6-1)
V Basic Wind Speed in MPH from User Inputs in Step 1

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Step 3: Dead Load

Calculated Ps (Sloped roof snow load) in the provided boxes.

Calculated Dead Load in the provided boxes.

Step 4: Snow Load (ASCE 7-10, Chapter 7)

Sloped Roof Snow Load Pressure Equation:

Ps=0.7*Cs*Ce*Ct*I*Pg (ASCE 7-10, Sections 7.3 & 7.4 Flat and Sloped Roof Snow Loa

Pg Ground Snow Load (psf) from User inputs in Step 1.

- Cs Slope Factor (ASCE 7-10, Figure 7-2)
 - C_t Thermal Factor (ASCE 7-10, Table 7-3)
 - Importance Factor (snow) (ASCE 7-10, Table 1.5-2)
- Ce

Exposure Factor (ASCE 7-10, Table 7-2)

Commentary:

2)To be combined with the module dead load and used in wind load combinations.

3)The ground snow load is utilized to calculate the roof snow load, which is the load applied to the structure.

4) The Snow Importance Factor for Occupancy Category I = 0.8 and for Occupancy Category II = 1.0.

SFM SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Step 5: Seismic Load (ASCE 7-10)

Calculate seismic loads for both horizontal and vertical in the provided boxes.

Seismic Load Equation (Horizontal):

Seismic Load Equation (Vertical):

Commentary:

5) The Component Amplification Factor (a_p) for flushmount systems should be taken as 1.0 (AC428, Section 3.1.3.3).

6) The Component Response Modification Factor $(R_{\rm p})$ for flush-mount systems should be taken as 1.5 (AC428, Section 3.1.3.3).

7)The Seismic Importance Factor for Occupancy Categories I and II = 1.0.

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Step 6: Rewrite Your Loads

*Depending on your coordinate system, certain loads will need to be split into their horizontal and vertical components.

Total Dead Load:	psf
Wind Pressure Up:	psf
Wind Pressure Down:	psf
Snow Load:	psf
Seismic Load Horizontal:	lbs
Seismic Load Vertical:	psf

Step 7: Load Combinations (ASCE 7-10, Chapter 2, Section 2.4.1)

*The load combinations below have been identified as the likely controling cases for the roof structure.

1) D 8) D + 0.75(0.7E) + 0.75Lr D = Dead Load 9) D + 0.75(0.7E) + 0.75S 2) D + L_r L_r = Live Load to Roof 3) D + S 10) D + 0.7E S = Snow Load W_{up} = Wind Load Up 4) D + $0.6W_{up}$ 11) $0.6D + 0.6W_{up}$ 5) D + 0.6W_{down} 12) 0.6 D + 0.6W_{down} W_{down} = Wind Load Down 6) D + 0.75(0.6W_{down}) + 0.75S 13) 0.6 D + 0.7E E = Earthquake/Seismic Load 7) D + 0.75(0.6 W_{down}) + 0.75L_r

Step 8: Create Initial Array Layout

- Identify the structural supporting members of your building. A sketch/drawing of the roof/building with location of supporting a. members, vents, skylights, cable/wires, areas to avoid, etc., is highly recommended.
- b. Create a "rough draft" layout of solar modules on the actual project roof. (Refer to System Application & Layout Rules)

SFN SUN FRAME MICRORAII

ANALYTICAL METHOD ASCE 7-10 Design & Engineering Guide Page

Step 9: Determine Array Design Pressure by Roof Zone

- a. Using information in steps 1 & 2 and go to the prescriptive pressure tables, in the Appendix B.
- b. Use fill-in boxes below to document your project specific pressures and tables utilized.

Note: Not all prescriptive pressure tables have been included in the appendix. If your project specific pressures are unavailable, the following steps should be followed; a) Go to www.unirac.com and access the SFM design tool. b) input your project specific requirements. c) Design pressure will be generated for you based on your project specific inputs. d) these pressures (by roof zone) will be used to follow through the remaining steps below.

Controlling Pressure:

	Up (psf)	Down (psf)	Down Slope (psf)	Lateral (psf)	Rule*
Roof zone 1:					
Roof zone 2:					
Roof zone 3:					

*Record the rule with the highest number in this column of cells. For example, if the rule for Up is 1, Down is 2, Side is 1, and Lateral is 3 across a row (roof zone), input and utilize Rule 3 as stated in the Appendix.

c. Record the SunFrame Micro Rail Rules:

Interior Rows:	Overhang	Span	North Row:	Overhang	Span

Can Consecutive Spans be Utilized per the Rules?

SFN SUN FRAME MICRORAI

ANALYTICAL METHOD ASCE 7-10 DESIGN & ENGINEERING GUIDE PAGE

Step 10: Look-up Layout and Attachment Guidelines for Array

a. Review your layout in Step 8 above, the rules as recorded in Step 9c above, and the System Application & Layout Rules to determine potential attachment points to your structure and if additional support will be required to support your system.

Step 11: Determine Load to the Roof

- a. To determine the load on the roof through the attachment:
 - i. Determine the tributary area to each attachment.
 - ii. Review the controlling pressure in Steps 6 and 7.
 - iii. Determine pressure zones on the roof per the layout and attachment guidelines in the Installation Guide.
 - iv. Multiply the tributary area by the roof pressure to obtain loads to the roof attachment.
 - v. Determine the point load to the roof at each attachment.
 - vi. Appendix E contains a sample calculation for reference.

Step 12: Check Roof Load

a. Ensure that the supporting structure is capable of withstanding the additional loads imposed by the proposed solar system.

Step 13: Define Grounding & Bonding Path

a. Refer to the Installation Guide for how to determine the Grounding and Bonding Path.

Big Big ReibeT Josen Josen 2 20063 Josen Josen 6 -297 148 -98 6 -275 148 -98 6 -275 148 -98 6 -275 140 -87 6 -275 130 -87 6 -275 131 -87 6 -275 132 -88 7 -276 132 -88 7 -275 132 -88 7 -275 132 -88 7 -275 132 -88 7 -275 132 -100 8 -122 132 -127 9 -363 144 -127 1 -121 122 -102 1 -151 152 -122 1 -151 132 -127 1 -151 <th>Beight = 15 ft. Bidg, Heig 2 2003 pow (b free) 2000.1 2 2003 pof (b free) 2000.1 5 27.5 14.8 -9.8 -18.6 6 27.5 14.0 -8.7 -17.5 6 27.5 14.0 -8.7 -17.6 7 27.6 13.0 -8.8 -17.6 7 27.5 13.0 -8.8 -17.6 7 27.5 13.0 -8.8 -17.6 7 27.5 13.0 -8.7 -17.6 2 27.5 13.0 -10.0 -12.2 2 2.2 13.0 -10.0 -12.2 2 -12.2 13.0 -10.1 -12.3 3 -12.3 12.7 -10.2 -12.4 3 -12.3 12.7 -12.2 -12.2 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.2</th> <th>Bigg, Height = 15 ft. Bigg, Height = 30 ft.</th> <th>Eight = 15 ft. Bloit, theight = 30 ft. All theight</th> <th>Bidia: Height = 30 ft. Bidia: Height = 30 ft. Bidia: Height = 30 ft. Bidia: Height = 30 ft. wigot 0 mm 0 mm 0 mm 2001 2003 2016 333 6 297 148 -87 -175 -775 140 -013 211 22-9 -363 6 275 143 -87 -175 -776 130 211 -29 -317 7 275 132 481 -175 -776 130 216 -337 2 -275 132 481 -775 132 123 -156 -337 2 -122 133 -99 -122 -123 123 -151 -151 3 -123 123 -123 123 123 123 -151 -152 3 -123 123 -123 123 123 123 -152 152 -152 3 -123 123 123 123</th>	Beight = 15 ft. Bidg, Heig 2 2003 pow (b free) 2000.1 2 2003 pof (b free) 2000.1 5 27.5 14.8 -9.8 -18.6 6 27.5 14.0 -8.7 -17.5 6 27.5 14.0 -8.7 -17.6 7 27.6 13.0 -8.8 -17.6 7 27.5 13.0 -8.8 -17.6 7 27.5 13.0 -8.8 -17.6 7 27.5 13.0 -8.7 -17.6 2 27.5 13.0 -10.0 -12.2 2 2.2 13.0 -10.0 -12.2 2 -12.2 13.0 -10.1 -12.3 3 -12.3 12.7 -10.2 -12.4 3 -12.3 12.7 -12.2 -12.2 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.7 -25.1 3 -12.3 13.2 -12.2	Bigg, Height = 15 ft. Bigg, Height = 30 ft.	Eight = 15 ft. Bloit, theight = 30 ft. All theight	Bidia: Height = 30 ft. wigot 0 mm 0 mm 0 mm 2001 2003 2016 333 6 297 148 -87 -175 -775 140 -013 211 22-9 -363 6 275 143 -87 -175 -776 130 211 -29 -317 7 275 132 481 -175 -776 130 216 -337 2 -275 132 481 -775 132 123 -156 -337 2 -122 133 -99 -122 -123 123 -151 -151 3 -123 123 -123 123 123 123 -151 -152 3 -123 123 -123 123 123 123 -152 152 -152 3 -123 123 123 123
ft Bid ball Bid 200m Bid 200m 14.8	ft. Bidg. Heig Pown Lose 1 2006 1 14.8 -9.8 18.6 14.4 -8.7 -17.5 13.2 -8.7 -17.6 13.2 -8.7 -17.6 13.2 -8.7 -17.6 13.2 -8.7 -17.6 13.2 -8.8 -17.6 13.2 -8.8 -17.6 13.2 -8.8 -17.6 13.2 -8.8 -17.7 13.3 -9.9 -12.7 13.4 -12.7 -25.1 13.2 -10.0.1 -12.7 13.3 -10.1 -12.7 13.4 -12.7 -25.1 13.4 -12.7 -25.1 13.4 -12.7 -25.1 13.4 -17.6 -17.7 13.4 -17.5 -17.6 13.4 -17.5 -17.6 13.4 -17.5 -17.6 13.4 -17.5 -17	Ith Biddi, Height = 30 ft. Mode Biddi, Height = 30 ft. Mode 10^{MO} 0^{MO} 0^{MO} 0^{MO} 0^{MO} 0^{MO} 0^{MO} 14.4 -0.8 $-3.27.5$ $3.04.2$ $3.04.2$ $3.04.2$ 14.4 -3.7 17.5 $2.7.5$ $3.14.2$ $10.0.8$ 13.2 $-3.7.5$ $3.12.2$ $3.02.2$ $3.04.2$ $3.04.2$ 13.2 -17.5 $2.7.5$ $3.2.2$ $3.04.2$ $3.04.2$ 13.2 -10.01 $4.12.2$ -12.2 $3.04.2$ $4.04.2$ 13.2 -10.01 $4.12.2$ -12.2 $3.04.2$ $4.04.2$ 13.2 -10.2 -12.2 $2.12.2$ $10.0.2$ $10.2.4$ 13.2 -10.12 -12.2 -22.1 $10.2.2$ $10.2.4$ 13.2 -12.2 -22.1 $2.2.1$ $10.2.2$ $10.2.4$ 13.2 -12.2 $-22.1.2$ $2.0.2.1$ $10.2.4$	It. Bidg. Height = 30 ft. Bidg. Height = 30 ft. Bidg. Height = 30 ft. Bidg. Heig 00m $(u Researce field) 0 mm (u \text{ Researce field) 0 mm (u \text{ Researce field) 20 mt. 144 8.7 -175 -27.5 14.0 -10.9 -21.6 132 8.7 -176 -27.5 132 -10.9 -21.6 133 8.8 -17.6 -27.5 132 -10.9 -21.6 133 8.8 -17.6 -27.2 132 -10.9 -21.6 133 9.9 -17.2 -27.2 132 -12.2 -12.7 -27.6 133 9.9 -12.2 -12.3 12.9 -12.6 -27.6 134 172 -17.2 13.2 12.7 -14.6 -27.6 132 -10.1 12.3 -12.7 25.1 30.1 -24.6 134 -17.2 21.7 25.1 30.1 -24.6 -27.6 134 <$	Image: Height = 30 ft. Bidg. Height = 30 ft. Bidg. Height = 40 ft Porm Dot Height = 30 ft. Dot Distribut Bidg. Height = 40 ft Porm Max Bart Sam Distribut Bidg. Height = 40 ft Sam HA BA JT ZTS ZTS Max JT ZTS Sam HA BA JT ZTS Max JT ZTS Max ZTS ZTS <thzs< th=""> ZTS <thzs< th=""></thzs<></thzs<>
Bid (k) (k) (k) (k) (k) (k) (k) (k) (k) (k)	Bidg, Heig Janes Bidg, Heig Janes Janes 20061 Janes -8.7 -17.5 -8.7 -17.5 -8.8 -17.6 -8.8 -17.6 -8.8 -17.6 -8.8 -17.6 -8.8 -17.5 -9.9 -12.2 -10.0 -12.2 -10.1 -12.3 -10.2 -12.2 -10.1 -12.2 -10.2 -12.2 -10.1 -12.2 -10.1 -12.2 -10.2 -12.2 -10.1 -12.2 -11.2 -25.1 -12.2 -25.1 -12.2 -25.1 -12.2 -17.6 -12.4 -17.5 -12.2 -25.1 -12.2 -25.1 -12.2 -17.6 -14.4 -17.5 -15.2 -25.1 -14.4 -17.5	Bidg. Height = 30 ft. Owe Ove	Bidg, Height = 30 ft. Bidg, Height = 30 ft. Bidg, Height = 30 ft. Jone 1 Zone 2 Jone 3 (ph) Jone 2 Jone 1 Zone 2 Jone 3 (ph) Jone 3 Jane 1 Zone 2 Jone 3 (ph) Zone 1 Zone 2 Jane 1 Zone 2 Jone 3 (ph) Zone 1 Zone 3 Jane 2 Jane 2 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 Jan 3 <td>Image: Height = 20 ft. Bilds. Height = 20 ft. Bilds. Height = 50 ft. $Ver Ver Ver Solution Join 3 Join$</td>	Image: Height = 20 ft. Bilds. Height = 20 ft. Bilds. Height = 50 ft. $Ver Ver Ver Solution Join 3 Join $
	g. Heig 2006 2 2006 2 2006 2 48.6 47.5 47.5 47.6 47.5 47.5 47.5 47.2 47.5 42.2 42.2 42.2 42.2 42.2 42.5 42.	B. Height = 30 ft. B. arear field. 0 over 0 over 2006 2 20043 0 over 0 over 2005 2005 3 100 0 over 102 217.5 273.5 13.0 10.0 217.6 273.5 13.0 10.0 217.6 273.5 13.0 10.0 217.6 273.5 13.0 10.0 217.7 270.6 13.0 10.0 217.1 217.2 13.0 10.0 217.1 27.1 13.2 10.0 217.2 13.0 13.2 10.0 217.2 13.0 13.2 12.4 217.1 217.2 13.0 12.4 217.2 13.0 13.2 12.4 217.2 13.0 13.2 12.4 225.1 29.0 13.0 14.0 217.5 11.1 13.2 14.0 217.5 11.1 13.2 14.0	R. Height = 30 ft. Bidg. Height = 30 ft. 2000 2 2000 10 100 10 200 12 2000 2 2000 10 200 12 200 21.6 217.5 -27.5 13.2 10.3 21.6 217.6 -27.5 13.2 10.9 21.6 217.6 -27.6 13.2 10.9 21.6 217.6 -27.6 13.2 10.9 21.6 217.5 13.2 13.0 10.9 21.6 217.5 13.2 13.2 40.9 21.6 217.2 13.2 13.2 40.9 21.6 217.2 13.2 13.2 40.9 21.6 217.2 13.2 13.2 40.9 21.6 217.3 13.2 13.2 41.7 45.1 225.1 23.0 13.2 44.9 23.2 217.4 13.2 14.9 23.6 40.4 275.5 17.3 14.8 23.6 275.1 <td< td=""><td>R. Height = 30 ft. Bidg. Height = 50 ft Zeres <thzeres< th=""> <th< td=""></th<></thzeres<></td></td<>	R. Height = 30 ft. Bidg. Height = 50 ft Zeres Zeres <thzeres< th=""> <th< td=""></th<></thzeres<>
ht = 30 f 25.5 - 25.7 - 25.7 - 25.5 - 27.5 - 27.5 - 27.5 - 27.5 - 27.5 - 27.5 - 27.5 - 27.5 - 27.6 - 27.6 - 27.6 - 27.6 - 27.2		B 400 2008 103 103 103 103 103 103 103 103	Bidg. Heig Unpresentation Unpresentation 2000x1 200x5 -12.1 -22.9 -10.8 -21.6 -10.8 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -10.9 -21.6 -12.4 -15.0 -12.4 -15.0 -12.4 -15.0 -12.4 -15.0 -12.4 -15.0 -12.5 -15.0 -14.8 -26.1 -14.8 -26.1 -14.8 -26.1 -14.9 -26.0 -17.4 -30.0 -17.4 -30.0 -17.4 -30.0 -17.4 -30.0 -17.4 -30.0 -17.4 -30.0 -17.4 -30.0	Bidg. Height = 60 ft Jone 1 Zone 1 Zone 2 Zone 3 Jone 2 Jone 2 Zone 3 -10.1 -22.9 -36.3 -10.2 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -10.9 -21.6 -33.7 -12.1 -15.0 -15.0 -12.4 -15.1 -45.2 -14.9 -25.1 -45.2 -14.9 -25.1 -45.2 -14.9 -20.4 -20.6 -15.1 -23.3 -20.5 -14.9 -20.4 -20.6 -14.9 -20.4 -20.6 <td< td=""></td<>
free 30 ft. (pf) bowm bowm 20.7.5 14.8 -27.5 14.8 -27.5 14.8 -27.5 14.8 -27.5 14.8 -27.5 14.8 -27.5 14.8 -27.5 14.0 -27.5 13.2 -27.5 13.2 -27.5 13.2 -27.5 13.2 -27.5 13.2 -27.2 13.2 -27.2 13.2 -27.2 13.2 -28.1 13.2 -29.1 13.2 -39.1 13.2 -17.5 14.4 -28.1 13.2 -17.5 14.4 -17.5 14.4 -17.6 14.0 -17.6 14.2 -17.6 14.2 -17.6 14.2 -17.6 14.2 -17.6	t, 00000 14.8 14.8 14.8 14.8 14.8 14.8 13.2 1		dg. Heig Preserves/ 20062 -221.6 -221.6 -221.6 -221.6 -221.6 -221.6 -221.6 -221.6 -221.6 -221.2 -22.0 -25.0 -25.0 -25.2	dg. Height = 60 ft dg. Height = 60 ft zees 2 zee3 -22.9 -36.3 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.7 -21.6 -33.6 -21.6 -15.0 -22.1 -25.4 -20.4 -20.4 -20.4 -20.4 -30.2 -20.5 -31.3 -20.5 -33.3 -20.4 -30.4 -20.4 -30.4 -20.4 -33.9 -22.5 </td

SFN SUN FRAME MICRORAIL

PRESCRIPTIVE PRESSURE TABLES DESIGN & ENGINEERING GUIDE PAGE

a proce	1000	Ŧ	2:3	Ex	4	si i	Cat	00	6	10:	11:	12:	101	Z	E	-	ŝ	- Ca	ter		10	11:	12:	1:1	2:3	Exp	-	ure	Cat	00	6	10:	11	1	Roof	2:2	ě	4:1	in and	9	22 OD	80		101	12:			
Nuch State		-10.	12 -9.6	-9.6	12 -9.7	12 -9.7	1.1.	11 11	11- 21	12 -11	12 -11	12 -11.	13.	11- 21	12 -12(12 -12	-12	12 -12	-13.	-13.	17 -13	12 -13	12 -13.0	16.	12 -14.	14.1	14.	14.	16.	10 -16	12 -16.	12 -16.	12 -16.	01- 71	Plath Ss=0	20 20	12 6.6	12 79	12 8.7	12 9.2	12 9.4	12 9.4	15 9.2	20 91	12 8.1	54=0	0.0	
Up Frequences	7807 1	8 -205	-19.3	-19.3	-19.3	-19.4	12.4	0 -13.4	1 -13.5	1 -13.5	1 -13.6	2 -13.6	4 -25.1	9 -23.7	0 -23.7	0 -23.7	0 -23.8	1 -23.8	107- 0	-10.5	7 -16.6	7 -16.7	8 -16.7	5 -30.7	7 -29.0	8 -29.0	8 -29.0	104- 8	CUC- L	7 -203	8 -20.3	8 -20.4	8 -20.4	# 07- D	10 Ss=0.1	67	9.9	7.9	8.7	9.2	9.4	54	9.2	20	1.8	0 55=0.1	0.2	
Carl Carl	10007	32.6	30.2	-30.2	30.2	-30.2	12.4	-13.4	-13.5	-13.5	-13.6	-13.6	39.8	-36.9	36.9	36.9	-37.0	37.0	107	501-	16.6	-16.7	-16.7	48.5	45.0	45.0	45.0	45.1	200	-20.3	-20.3	204	204	20.4	58=02	9 5 W	6.6	7.9	8.7	9.2	9.4	9.4	9.5	0.0	8.1	55=0.2	0.5	
Down		31.9	0'0E	27.9	25.8	23.8	211	19.5	18.1	16.9	15.8	14.9	31.9	30.0	27.9	25.8	23.8	21.9	877	212	18.6	17.6	16.7	29.8	28.1	26.2	24.3	272	740	225	21.2	20.1	19.2	1.81	55=0.3	49	6.6	7.9	8.7	9.2	9.4	9.4	9.2	-	8.1	53=0,3	0.7	
a) a	1200	-10.8	-9.6	-9.6	-9.7	-9.7	1.6	-11.0	111-	111-	111	-11.2	-15.6	-14.0	-14.0	-14.0	-14.0	-14.1	-15.8	-159	154	-16.0	-16.0	-18.7	-16.8	-16.8	-16.8	-16.0	180	-19.0	-19.0	-19.0	-19.1	T'61-	55=0.4	49	6.6	7.9	8.7	9.2	9.4	9.4	9.2	-	1.8	53=0.4	6.0	spei
Premires (7 8407	-205	-19.3	-19.3	-193	-19.4	13.4	13.4	-13.5	-13.5	-13.6	43.6	-29.2	275	-275	-275	-27.6	27.6	781-	761-	193	19.4	-19.4	34.8	32.8	32.8	-32.8	979	0.00	-23.0	-23.0	23.0	-23.1	1.63	5=05	87	6.6	7.9	8.7	9.2	9.4	9.4	92		2 28	\$105	1.0	snow lo inde verit
Mar (Mar	10000	-32.6	-30.2	-30.2	-30.2	-30.2	13.4	-13.4	-13.5	-13.5	-13.6	-13.6	-46.1	42.7	-42.7	-42.8	-42.8	42.8	2.61-	1.9.2	-10.3	-19.4	-19.4	54.8	-50.8	-50.8	-50.9	-50.9	0.00	-23.0	-23.0	-23.0	-23.1	1.67-	Ss=1.0	20	6.6	7.9	8.7	9.2	9.4	9.4	9.2	-	1 1 10	54 1.0	1.6	within region wind
Down	in the second	31.9	30.0	27.9	25.8	23.8	21.1	19.5	18.1	16.9	15.8	14.9	31.9	30.05	27.9	25.8	23.8	21.9	14.5	177	20.1	19.1	18.2	29.8	28.4	26.6	24.7	228	25.5	24.0	22.8	21.7	502	A.1	55=1.25	52	9'9	7.9	8.7	9.2	9.4	8.4	9.2		8.1	Sa 125	1.8	This
an	1 2007	-13.4	-11.9	-12.0	-12.0	-12.0	126	-13.6	-13.6	-13.7	-13.7	-13.8	-18.2	-16.3	-16.3	-16.3	-16.4	-164	-184	184	-185	-18.6	-18.6	-21.3	1.91	19.1	1.91	19.2	215	-21.6	-21.6	-21.6	21.7	117	91 I I	55	6.9	7.9	8.7	92	9.4	8.4	9.2		8.2	8115	2.2	Back
Pressires (7 6607	-25.1	-23.7	-23.7	-23.7	-23.8	16.5	-16.5	~16.6	-16.6	-16.7	-16.7	-33.8	-31.9	-31.9	-32.0	-32.0	-32.0	-41.3	-12.5	-27.4	-22.5	-22.5	-39.4	-37.2	-37.2	-37.2	-37.5	0.96-	-26.1	-26.1	-26.2	-26.2	7.07.	5s=2.0	6.0	7.4	8.4	9.1	9.5	9.7	9.6	9.5		8.7	53=2.0	2.9	1
the last	10007	-39.8	-36.9	-36.9	-36.9	-37.0	145	-165	-16.6	-16.6	-16.7	-16.7	-53.4	495	49.5	264-	-49.5	-49.6	-223	577-	A11-	-225	-225	-62.1	-57.5	-57.6	-57.6	0.12-	-26.0	-26.1	-26.1	-26.2	-26.2	7.07-	55=25	6.6	8.0	0.6	6.7	10.01	10.2	10.2	10.0	0.0	1.6	58=25	3.6	ASC
Down		319	30.0	27.9	25.8	23.8	27.8	212	19.8	18.6	17.6	16.7	31.9	30.1	28.1	26.0	23.9	22.0	107	24.5	21.9	20.8	20.3	29.8	29.4	27.5	25.6	33.0	27.7	25.8	24.5	23.4	23.2	13.1	5=3.1	2 2	8.6	9.6	10.3	10.7	10.8	10.8	10.6		6.9	5=3.2	45	Massa

PRESCRIPTIVE PRESSURE TABLES DESIGN & ENGINEERING GUIDE PAGE

SUN FRAME MICRORAIL

SF

IS ft. BIdg. Heat 0000 0000 0000 0000 20 256 255 20 256 256 20 256 256 20 256 255 20 256 256 20 256 256 20 127 256 20 127 256 20 127 256 21 272 256 27 127 256 27 127 256 27 127 256 27 127 256 27 127 256 27 127 256 27 127 256 27 128 275 28 176 276 29 128 276 27 128 276 28 276 276 <th>15 Aldg, Height = 30 ft 15 Bidg, Height = 30 ft 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 25 25 25 25 25 260 260 20 12 20 20 20 20 20 20 20 12 20 12 20 260 260 260 20 12 20 12 20 20 20 20 20 12 20 12 20 20 20 20 20 12 12 20 20 20 20 20 21 13 14 17 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21</th> <th>15 fm Bidg, Height = 30 ft. 15 mon Nown Bidg, Height = 30 ft. Nown No No<</th> <th>15 fm. BIdg. Height = 30 fm. Non Non<th>Interpretation Interpretation Interp</th></th>	15 Aldg, Height = 30 ft 15 Bidg, Height = 30 ft 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 25 25 25 25 25 260 260 20 12 20 20 20 20 20 20 20 12 20 12 20 260 260 260 20 12 20 12 20 20 20 20 20 12 20 12 20 20 20 20 20 12 12 20 20 20 20 20 21 13 14 17 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21	15 fm Bidg, Height = 30 ft. 15 mon Nown Bidg, Height = 30 ft. Nown No No<	15 fm. BIdg. Height = 30 fm. Non Non <th>Interpretation Interpretation Interp</th>	Interpretation Interp
BIdg. Heat BIdg. Heat 26001 20001 20001 2000 -14.2 25.5 -12.5 25.0 -12.5 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -12.7 25.0 -14.5 47.5 -12.7 25.0 -14.3 35.6 -14.5 47.5 -14.5 47.5 -14.5 47.5 -14.5 47.5 -14.5 47.5 -14.5 47.5 -14.5 47.5 -14.5 47.5 -18.2 35.6 -20.5 24.9 -20.5 24.4 -21.8 42.4 -21.8 42.4 -21.8 </td <td>BIdg, Height = 30 ft. Jone 1 Seve 2 Zone 3 Action 1 Jone 3 26963 20063 20063 Jane 3 2506 3 20063 20063 -14.2 25.5.0 288.9 20063 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 289.9 -12.7 25.5.1 399.0 255.0 -12.8 25.5.1 399.0 255.0 -12.8 27.5 255.0 28.9 -12.8 27.5 255.0 28.3 -14.5 -17.5 25.0 25.0 -14.5 -17.6 27.5 255.0 -14.5 -17.6 27.5 25.0 -18.3 35.6 28.3 28.3 -20.3 35.5 25.0 25.0 -21.8 42.3 42.3 45.3</td> <td>Bidg, Height = 30 ft. Index team Index team Index team Index team Index team Total team Index team Index team Index team Late to the team</td> <td>Index Index <t< td=""><td>IBIGL HEIRITH = 30 ft. IDE. <th< td=""></th<></td></t<></td>	BIdg, Height = 30 ft. Jone 1 Seve 2 Zone 3 Action 1 Jone 3 26963 20063 20063 Jane 3 2506 3 20063 20063 -14.2 25.5.0 288.9 20063 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 288.9 -12.7 25.5.1 289.0 289.9 -12.7 25.5.1 399.0 255.0 -12.8 25.5.1 399.0 255.0 -12.8 27.5 255.0 28.9 -12.8 27.5 255.0 28.3 -14.5 -17.5 25.0 25.0 -14.5 -17.6 27.5 255.0 -14.5 -17.6 27.5 25.0 -18.3 35.6 28.3 28.3 -20.3 35.5 25.0 25.0 -21.8 42.3 42.3 45.3	Bidg, Height = 30 ft. Index team Index team Index team Index team Index team Total team Index team Index team Index team Late to the team	Index Index <t< td=""><td>IBIGL HEIRITH = 30 ft. IDE. <th< td=""></th<></td></t<>	IBIGL HEIRITH = 30 ft. IDE. IDE. <th< td=""></th<>
A series of the	Rhit = 30 ft. ageft -30 ft. ageft -30 ft. -28.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.9 -38.0 -38.9 -39.0 -39.0 -39.0 -39.0 -39.0 -17.5 -17.5 -17.6 -17.5 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -25.0 -25.0 -25.0 -25.0 -25.2 -55.1 -25.2 -55.2 -25.2 -55.2 -25.2 -55.2 -25.2 -55.2 -55.2 -57.8 -57.8 -57.8	ght = 30 ft. pown leff. Down 2200.2 25.9 -42.0 25.9 -38.9 24.0 -38.9 24.0 -38.9 24.0 -38.9 24.0 -38.9 24.0 -38.9 24.0 -38.9 20.2 -38.9 20.2 -38.9 20.2 -38.9 20.2 -39.0 18.9 -17.5 18.9 -17.5 18.9 -17.5 18.6 -17.5 18.7 -17.5 19.4 -17.5 19.4 -17.5 19.4 -25.0 24.9 -25.0 22.3 -25.0 22.4 -25.0 22.3 -25.0 22.3 -25.0 22.3 -25.0 22.3 -25.0 22.4 -25.0 22.5 -25.6 22.6 <td>Byle 30 ft. Blag ben Jown Jown John ben Jown Jown John ben Jown Jown John -28:9 25.9 17.5 2001 -38:9 23.1 15.5.6 15.5.6 -38:0 189 15.7 15.5 -38:0 189 2017 15.7 -38:0 189 215.7 15.5 -38:0 189 217.7 15.7 -38:0 189 217.7 15.7 -38:0 189 217.7 15.7 -175 17.8 17.7 17.8 -175 17.8 17.7 17.8 -175 17.8 17.7 17.8 -175 18.7 17.8 17.7 -17.8 17.8 17.8 17.7 -17.8 17.8 17.8 17.7 -17.8 24.0 24.3 24.3</td> <td>RIAL RIAL RIAL RIAL RIAL REA Jonna Jonn Jonn Jonn Jonn Jonn Jonn Jonna Jonn Jonn Jonn Jonn Jonn Jonn -42:0 25.9 175 -32.5 -51.2 Jonn Jonn -42:0 159 157 -30.7 -47.6 Jonn Jonn</td>	Byle 30 ft. Blag ben Jown Jown John ben Jown Jown John ben Jown Jown John -28:9 25.9 17.5 2001 -38:9 23.1 15.5.6 15.5.6 -38:0 189 15.7 15.5 -38:0 189 2017 15.7 -38:0 189 215.7 15.5 -38:0 189 217.7 15.7 -38:0 189 217.7 15.7 -38:0 189 217.7 15.7 -175 17.8 17.7 17.8 -175 17.8 17.7 17.8 -175 17.8 17.7 17.8 -175 18.7 17.8 17.7 -17.8 17.8 17.8 17.7 -17.8 17.8 17.8 17.7 -17.8 24.0 24.3 24.3	RIAL RIAL RIAL RIAL RIAL REA Jonna Jonn Jonn Jonn Jonn Jonn Jonn Jonna Jonn Jonn Jonn Jonn Jonn Jonn -42:0 25.9 175 -32.5 -51.2 Jonn Jonn -42:0 159 157 -30.7 -47.6 Jonn

SUN FRAME MICRORAIL

SF

PRESCRIPTIVE PRESSURE TABLES 24 DESIGN & ENGINEERING GUIDE PAGE

ft. BIdg. Heil 00m Ub frequents 00m Ub frequents 134 2511 46.3 159 2012 2013 159 2015 33.5 159 2225 43.6 159 -225 43.3 150 -225 43.3 150 -225 30.6 271 -25.5 30.6 271 -25.5 30.7 271 -25.5 30.7 270 -25.5 30.7 271 -25.5 30.7 266 -32.1 61.6 195 -32.1 61.7 192 -32.1 61.7 193 -35.0 61.6 193 -35.0 61.6 193 -35.0 61.6 193 -35.1 61.7 193 -35.1 61.7 193 -35.1 61.7 193 -35.1	ft. Bildg. Height = 30 f 06wn Ub freemen field) 06wn Jb freemen field) 150 Zone 2 Zone 3 150 Zone 2 Zone 3 150 Zone 2 Zone 3 169 -22.5 43.6 -67.5 169 -22.5 43.7 -67.5 169 -22.5 43.7 -67.5 271 -25.3 30.6 -30.6 271 -25.5 30.7 -30.7 271 -25.5 30.7 -30.7 271 -25.5 30.7 -30.7 271 -25.5 30.7 -30.7 266 -25.5 30.7 -30.7 265 -25.5 30.8 -30.6 319 -35.1 61.6 -94.9 319 -35.1 61.6 -94.9 311 -35.4 43.3 -43.4 311 -35.1 61.6 -94.9 311	ft. Bidd. Height = 30 ft. 00mm Lone1 20me3 00mm 134 -25.1 46.3 -72.7 13.4 150 -25.5 43.7 67.4 17.0 169 -22.5 43.7 67.5 16.9 169 -22.5 43.7 67.5 16.8 169 -22.5 43.7 67.5 16.8 168 -22.5 43.7 67.5 16.8 168 -22.5 43.7 67.5 16.8 2701 -25.3 30.6 -30.7 30.7 20.7 267 -25.4 30.7 -30.7 26.7 26.8 267 -25.4 30.7 30.7 30.7 26.7 266 -25.6 -30.7 36.8 26.7 25.8 192 -35.1 61.7 96.9 27.1 26.7 267 -25.5 -30.8 43.3 36.5 27.1 192 <t< th=""><th>It. $\exists II_{GL}$ $\exists II_{GL}$ $\exists II_{C}$ $\exists II_{C}$ II_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} $IIII_{C}$ $IIIII_{C}$ $IIIII_{C}$ $IIIII_{C}$ $IIIIIIII_{C}$ $IIIII_{C}$</th><th>It. Bidg, Height = 30 ft. Bidg, Height</th></t<>	It. $\exists II_{GL}$ $\exists II_{GL}$ $\exists II_{C}$ $\exists II_{C}$ II_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} III_{C} $IIII_{C}$ $IIIII_{C}$ $IIIII_{C}$ $IIIII_{C}$ $IIIIIIII_{C}$ $IIIII_{C}$	It. Bidg, Height = 30 ft. Bidg, Height
Bilds, Heil Ib free tree Ib free tree Ib free tree Ib free tree 255.1 46.3 255.1 46.3 225.5 43.7 225.5 43.7 225.5 43.7 225.5 43.7 225.5 43.7 225.5 43.8 225.5 43.8 225.5 43.8 225.5 43.8 225.5 30.0 225.5 30.7 225.5 30.7 225.5 30.7 225.5 30.7 225.5 30.7 355.7 65.3 36.0 61.6 35.1 61.7 35.1 61.7 35.1 61.7 35.1 61.7 38.1 73.1 38.2 73.2 38.2 73.3 38.2 73.3 38.2 73.3 <	Bildat. Height = 30 f Ibb Fearer (p6f) Ab Fearer (p6f) 255.1 46.3 72.7 255.1 26.8.3 57.4 -25.5 43.7 57.5 -25.5 43.7 57.5 -22.5 43.7 57.5 -22.5 43.7 57.5 -22.5 43.7 57.5 -22.5 43.7 57.5 -22.5 43.7 57.5 -25.3 30.6 -30.7 -25.5 30.7 -30.7 -25.5 30.7 -30.7 -25.5 30.7 -30.7 -25.5 30.7 -30.7 -25.5 30.7 -30.7 -25.5 30.7 -30.7 -35.1 61.6 -94.9 -35.1 61.6 -94.9 -35.1 61.7 -95.0 -35.1 61.7 -92.0 -35.1 41.2 -30.7 -35.1 43.3	Bidg. Height = 30 ft.	Aller, Height = 30 ft. Bill Live Researce ford Down Up Lote 1 20ne 2 Jone 3 (p0) 20ne 1 25.1 45.8 -67.4 17.0 27.6 27.5 43.3 -67.4 17.0 27.6 27.5 43.3 -67.5 16.6 27.7 27.5 43.3 -67.5 16.6 27.7 27.5 43.3 -67.5 16.6 27.7 27.5 43.7 -57.5 16.6 27.7 27.5 30.7 -30.7 26.6 31.1 27.5 30.7 -30.7 26.6 31.1 27.5 30.7 -30.7 26.6 31.1 27.5 30.7 -30.7 26.7 31.1 27.5 30.7 -30.7 26.6 31.1 27.5 43.3 36.6 41.6 37.1 27.5 43.3 36.5 41.6 37.1 27.1 <	Bidgi, Heighti = 30 ft. Bidgi, Heighti = 31 ft. Bidgi, Heighti
	Anther state	Anne 200 Zones 00000 Zones 0000 -67.4 17.0 -67.5 16.9 -67.5 16.9 -67.5 16.9 -67.5 16.6 -67.5 16.6 -67.5 16.6 -67.5 16.6 -67.5 16.6 -90.6 27.0 -90.7 26.7 -90.8 26.7 -90.9 22.1 -90.9 22.1 -90.9 22.1 -90.9 22.1 -90.9 22.3 -90.9 22.1 -90.9 22.1 -90.9 22.1 -90.9 22.3 -91.2 26.6 -11.2 25.5 -11.2 25.5 -11.2 25.5 -11.2 25.5 -11.2 23 -11.2 23 -51.6 42.7	Ethe = 30 ft. Eth Ite State = 3 250.64 17.00 0.00m Ute 667.4 17.00 27.66 31.0 -67.4 15.4 30.8 27.5 -67.4 15.6 27.7 -31.0 -67.5 16.9 27.6 31.0 -67.5 16.6 27.1 31.0 -30.6 27.1 31.0 27.5 -30.7 56.7 16.6 27.7 -30.6 27.1 31.0 27.5 -30.7 26.3 16.6 27.7 -30.6 27.1 31.0 27.5 -30.7 26.3 14.1 27.2 -30.6 27.1 31.0 31.1 -30.6 27.1 31.0 31.1 -30.7 26.3 27.1 37.2 -30.8 26.5 41.6 41.7 -30.1 27.6 31.1 41.7 -43.3 36.1 27.5	Ehlt = 30 ft Bidg. Height ben 0em Ula Freesersided ben 0em Ula Freesersided ben 0em 100 ben 0em 100 -67.4 17.0 27.6 53.3 -67.5 16.9 27.6 53.3 -67.5 16.9 27.6 53.3 -67.5 16.8 27.7 53.3 -67.5 16.9 27.7 53.3 -67.5 16.8 27.7 53.3 -67.5 16.8 27.7 53.3 -90.6 27.1 31.0 -77.4 -30.7 26.7 31.1 -77.2 -90.9 27.1 31.0 -77.3 -90.1 27.7 53.3 55.5 -90.3 31.0 -77.3 57.6 -90.3 31.1 -77.2 57.3 -90.3 36.6 41.7 50.1 -91.2 36.7 -71.2

SFM SUN FRAME MICRORAIL PRESCRIPTIVE PRESSURE TABLES DESIGN & ENGINEERING GUIDE PAGE

SYSTEM APPLICATION RULES Design & Engineering Guide

_			La	ndscape	Orienta	ition	Portrait Orientation				
	MicroRail [Dimensions		Flashk	it SFM			Flashk	it SFM		
	(A)	(B)	Pr	essure L	imits (p	sf)	Pr	essure L	imits (p.	sf)	
	Overhang (in)	Span (in)		down	down	latoral		down	down	latoral	
Rule	Interior & I	North Rows	up	uowii	slope	laterai	up	uowii	slope	laterai	
1	24	72	21.3	33.0	9.7	3.1	12.8	19.8	5.8	1.8	
2	21	64	23.9	43.5	12.3	3.5	14.3	26.1	7.4	2.1	
3	18	48	31.9	59.8	16.7	4.7	19.1	35.9	10.0	2.8	
	10*	32*	42.6*	89.7*	22.3*	6.3*	25.6	53.9	13.4	3.7	
	8*	24*	63.9*	119.6*	33.4*	9.4*	38.4	71.96	20.1	5.6	
	Trim Rail D	Dimensions	Pr	essure L	imits (p	sf)	Pr	essure L	imits (p	sf)	
Rule	(C) Overhang (in)	(D) Span (in)	up	down	down slope	lateral	up	down	down slope	lateral	
1	24	72	31.9	46.9	9.7	n/a	19.1	28.2	5.8	n/a	
2	21	64	31.9	59.7	12.3	n/a	19.1	35.9	7.4	n/a	
3	18	48	31.9	59.8	16.7	n/a	19.1	35.9	10.0	n/a	
	10*	32*	42.6*	89.7*	22.3*	n/a	25.6	53.9	13.4	n/a	
	8*	24*	63.9*	119.6*	33.4*	n/a	38.4	71.9	20.1	n/a	

* Indicates values specifically provided for portions of arrays that may fall within roof zones 2 and 3 that yield pressures larger than those provided in Rule 3

Design Rule Definitions (refer to 3x4 landscape array on the following page):

- A Max. Module Overhang Length of module extending past the first or last roof attachment of the row.
- **B** Max. Span The span between MicroRail roof attachments.

- C Max. Trim Rail Overhang Length of Trim Rail extending past the first or last roof attachment of the row.
- D Max. Span for Trim Rail. (Measured between Trim Rail Roof Attachment)
- **E** Trim Rail is not required to be flush with the edge of the module. (+/-2" is acceptable.)
- F Trim Rail overhang from edge of Trim Rail to edge of Trim Rail Roof Attachment. (3" min)
- **G** Module width is limited to 39.37 in (1 meter.) Reduce spans linearly for modules wider than this.
- ${f H}$ Each section of Trim Rail and each module must be supported by at least 1 attachment.
- I Modules shall be attached to trimrail with module clips per image and table at right

^{*}Reduce to L X 14% if 3rd clip is used

Requirem	nents for 3rd Module (lip at TrimRail (Lands	cape Orientation Only)
Module Size	Approx. Dim. (WxL)	Module Frame Ht.	Ground Snow Load Exceeds
60 Coll	20" v 66"	32mm-33mm	30 psf
oucen	59 X 00	35mm-40mm	50 psf
72.Coll	20" v 20"	32mm-33mm	20 psf
72 Cell	39 X 60	35mm-40mm	30 psf

Pressure limit Modification Guidelines

Pressure limits provided above were calculated utilizing a module size of 39.37in wide x 65in long (17.88sf module area)
These pressure limits may be increased or decreased linearly.
To modify pressure limits provided, follow these simple steps:

- 1. Divide the provided module area of 17.88sf by the area (sf) of your project specific module
- 2. Multiply the resultant by the above pressure limits that exceeds your project specific pressures

Minimum of 2 clips per module

26

SYSTEM APPLICATION RULES DESIGN & ENGINEERING GUIDE PAGE

See Installation Guide for detailed system layout procedure.

SFN SUN FRAME MICROPAU

Basic Layouts

Sample Layout A-1: 2x2 landscape array with 6.5" splice

SYSTEM LAYOUT RULES DESIGN & ENGINEERING GUIDE PAGE

The basic application rules for the SFM system are extremely simple.

Base Rules:

- All modules must be supported at four corners on the North and South edges. Except at row 1, where the south edge of each first row module will be supported by Trim Rail and at least two module clips
- Any intersection of module corners must be supported according to the following Connection/Attachment Rules.
- All MicroRails are oriented in an east-west direction (perpendicular to roof slope).

Connection/Attachment Rules:

- **X** 2" MicroRails: Supporting attachments installed at applicable spans per design rules. (See table on page 26.)
- **1** Any outer edge module corner must be supported at the first rafter interior to the array.
- **2v** 2 Modules Vertical: 2" MicroRail Interface between two modules oriented in the north-south direction in relation to each other whose nearest east or west edges are exposed.
- **2h** 2 Modules Horizontal: 6.5" Splice Interface between any two modules oriented in the east-west direction in relation to each other along the exposed north edge. (Roof attachment not required. See detail A on page 29.)
- **3** 3 Module Intersection with two Horizontal: 6.5" Splice Interface between any three modules where two are oriented in the east-west direction in relation to each other. (Roof attachment not required. See detail A on page 29.)
- **4** 4 Modules Intersecting at their Corners: 6.5" Splice Interface between four modules in a grid pattern. (Roof attachment not required. See detail A on page 29.)
- 5 8" Attached Splice: Similar to 2h, 2v, & 4, roof attachment is required. (See detail B on page 29.)
- Trim Rail: Must be installed at the southern-most edge (first row) of modules. (A minimum of (1) Trim Rail roof attachment required per length of Trim. See table on page 26.)
- Trim Rail module clip: A minimum of two module clips per module (See rule I on page 26)

SYSTEM LAYOUT RULES DESIGN & ENGINEERING GUIDE PAGE

Detail B: 8" Attached Splice at module intersection

Technical Support

If you have further questions regarding the SunFrame MicroRail product, please contact Unirac at info@unirac.com or 505-242-6411. The Unirac website has an online calculator (U-Builder) which when used, will direct you to a page with additional information regarding the SFM product.

Table of Contents

Appendix A - Product Catalog Parts List	33
Appdenix B - Prescriptive Pressure Tables	34
Appendix C - Roof Pitch to Angle Conversion	54
Appendix D - Dead Load Calculation	55
Appendix E - Sample Calculation (ASCE 7-05)	56
Appendix F - Technical Data Sheets	71

APPENDIX A 33 PRODUCT CATALOG PARTS LIST PAGE

Product Catalog Parts List																																																
Catalog Number	Part Type	Description	Box Quantities																																													
004200D	KIT	FLASHKIT SFM TRIM COMP DARK	10																																													
008000U	ASSEMBLY	SFM N/S BONDING CLAMP	20																																													
250010U	ASSEMBLY	SFM SPLICE 6.5"	10																																													
250030U	ASSEMBLY	SFM ATTATCHED SPLICE 8"	10																																													
250100U	PART	SFM TRIMRAIL 66 UNIV DRK	4																																													
250110U	KIT	SFM TRIMRAIL UNIV CLIP W/HDW	10																																													
250120U	ASSEMBLY	SFM TRIM SPLICE DRK	10																																													
250020U	ASSEMBLY	SFM MICRORAIL 2"	10																																													
008100U	ASSEMBLY	SFM TRIM BONDING CLAMP	10																																													
250130U	PART	SFM TRIM END CAPS	10																																													
004070D	KIT	FLASHKIT SFM SLIDER COMP DARK	10																																													
	L			Ex	po	sur	e (Cat	ego	ry	В		_		-	E	хро	sur	e C	ate	gor	/ C				_	Exp	osu	re (Cate	ego	y D		_		-	_	-	Do	wn	slo	ope			_		1100	
-------------	-----------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------------	------	------	------	------	------	------	-------	-------	-------	-------	-------	----------	-----
1.101.10	8001 MICH	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	1112	12:12	-	44	21.15	4:12	5:12	6:12	7:12	8:12	10:12	11:12	12:12	1:12	2:12	3:12	4115	6:12	7:12	8:12	9:12	10:12	12:12	Bourt Disea	1:12	2:12	3:12	4:12		21:0	21:1	21.20	10:12	11:12	12:12		
du .	19407	-9.7	-8.7	-8.8	-8.8	-8.8	-8.9	6.6-	66-	-10.0	-10.0	-10.1	-10.1	1.61	101-	-10.8	-10.8	-10.8	-10.9	.123	-12.3	-12.4	-12.4	-12.5	-14.9	-13.3	-13.3	-13.4	-13.4	-15.1	-15.1	-15.2	-15.2	-15.2	20-00	0.7	14	1.9	20	2	172	57	0.5	33	5	3.4	54=0.0	0.0
Pressures (1607	-18.5	-17.4	-175	-17.5	-175	-17.6	-12.1	-12.1	-12.2	-122	-12.3	-12.3	9.00	510	-215	-215	-21.5	-21.6	-14.9	-15.0	-15.0	-15.1	-15.1	-27.9	-26.3	-26.3	5.02-	-26.4	-18.3	-18.4	-18.4	-18.4	-18.5	10-0	0.8	1.4	1.9	2.0	2.4	17	57	0.5	3.3	m m	3.4	5s=0.1	0.2
(Jac	10007	-29.5	-27.3	-27.4	27.4	-27.4	275	-12.1	-12.1	-12.2	-12.2	-123	-12.3	100	100	33.5	-33.5	-33.6	33.6	14.9	-15.0	-15.0	45.1	-15.1	44.1	40.8	40.9	805	41.0	-18.3	-18.4	-18.4	-18.4	18.5	60-02	1.0	1.6	2.0	2.2	5.2	2.8	3.0	1.0	3.4	10	3.5	55=0.2	0.5
Down		15.1	14.7	14.3	13.6	13.6	13.4	13.3	13.2	13.1	13.0	12.8	12.7		147	143	13.6	13.6	13.4	15.4	15.2	15.0	14.9	14.7	15.1	14.7	14.3	13.0	13.4	17.9	17.8	17.7	17.5	17.3	2010	11	11	2.2	2.4	17	2.9	15	55	3.5	3.6	3.7	55=03	0.7
9	1996	-9.7	-8.7	-8.8	-8.8	-8.8	-8.9	6.6-	6.6-	-10.0	-10.0	-10.1	-10.1		126	-12.6	-12.6	-12.7	-12.7	-14.3	-14.3	-14.4	-14.5	-14.5	-17.0	-15.1	-15.2	16.7	-153	-17.1	-17.2	-17.2	-173	-173	20-2	1.3	1.9	2.4	25	2.8	3.1	-	4 G G	3.7	3.7	3.8	53=0.4	0.9
Presentes L	7 0007	-18.5	47.4	475	375	475	-17.6	-12.1	-12.1	-12.2	322	-123	423	96.6	690	690	-25.0	-25.0	-25.0	47.4	-17.4	475	175	-17.6	315	29.7	-29.8	867-	29.9	-20.8	-20.8	-20.9	20.9	20.9	S-AE	14	2.0	25	2.6	5	3.2	4.5	20	3.8	80	33	\$0.03	1.0
(100	COME 2	-2.5	-27.3	-27.4	-27.4	-27.4	-27.5	-12.1	-12.1	-12.2	-12.2	-12.3	-12.3	0.14	5.16-	-38.8	-38.8	-38.9	-38.9	-17.4	-17.4	-17.5	-17.5	-17.6	-49.8	-46.1	-46.2	2.08-	-46.3	-20.8	-20.8	-20.9	6.02-	0.02-	11 - 1 V	119	24	29	31		3.6	2) (A	11	4	4.2	43	5141.0	16
Down		15.1	14.7	14.3	13.6	13.6	13.4	13.3	13.2	13.1	13.0	12.8	12.7		147	14.3	13.6	13.6	13.4	17.2	17.1	16.8	16.7	16.6	15.1	14.7	14.3	13.0	13.4	19.7	19.6	19.5	19.4	19.1	10 m m	2.1	2.6	3.1	32	n 1	3.8	4.0	1.6	4 4	44	44	\$s=1.25	1.8
an .	70001	-12.1	-10.8	-10.8	-10.8	-10.8	-10.9	-12.3	-12.3	-12.3	42.4	-12.4	42.5	100	C.01-	-147	-14.8	-14.8	-14.8	46.7	-16.7	-16.8	-16.8	-16.9	5.9.3	-17.3	-173	5/1-	17.4	-19.5	-19.5	-19.6	19.6	-19.6	11 m	25	2.9	3.4	5	10 A	0.6	4.4	4.4	4.6	4.6	4.7	8-15	2.2
Pressures	79407	-22.8	-21.5	-21.5	-21.5	-21.5	-21.6	-14.9	-15.0	-15.0	-15.0	-15.1	-15.1	- 10	P.80-	0 8	-29.0	-20.0	-29.1	-20.2	-20.2	-20.3	-20.4	-20.4	-35.8	-33.7	-33.8	-35.8	-33.9	-23.6	-23.6	-23.7	-23.7	-23.8	64-3A	3.2	3.6	3.9	4.2	4.4	9.6	4		5.1	52	53	53=2.0	2.9
-	20003	-36.1	-33.5	-335	-33.5	-33.6	-33.6	-14.9	-15.0	-15.0	-15.0	-15.1	-151-	101	595	44.9	-45.0	-45.0	-45.0	-20.2	-20.2	-203	-20.4	-20.4	-56.4	-523	-52.3	5.26-	-52.4	-23.6	-23.6	-23.7	-23.7	-23.8	00-00	4.0	43	4.6	5	3 1	5.5	22	00	5.8	65	5.9	58=25	3.6
Down		15.1	14.7	14.3	13.6	13.6	13.4	15.4	15.2	15.1	15.0	14.9	14.7	1	147	143	13.6	13.6	13.4	19.3	19.2	18.9	18.8	18.7	15.1	14.9	14.5	13.9	137	21.9	217	21.6	21.5	21.4		4.8	52	55	89 5	0.9	7.9	20	20	9.9	9.9	6.3	15=2	45

APPENDIX B PRESCRIPTIVE PRESSURE TABLES A4 PAGE

	Roof Pits	1:12	2:12	Exc	4:12	5:12	Cat	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	Cat	8:12	9:12	10:12	11:12	12:12	1:12	2:12	ZUS EXD	051	6:12	21:12	8:12	9:12	10:12	12:12	Roof Pite	1:12	2:12	3:12	4:12	5:12	9:12	TT:/	21:0	10:12	C 1-1-1	12:12		
0 5	th Zone 1	-11.1	-9.8	6.6-	6.6-	-9.9	-11.2	-11.3	-11.3	-11.4	-11.4	-11.4	-13.7	-12.2	-12.2	-12.3	-12.3	021-	-13.9	-14.0	-14.0	-14.0	-14.1	-16.9	-15.1	-15.1	115.7	-15.2	-17.0	-17.1	-17.1	-17.2	-17.2	th Sc=0.0	0.6	1.2	1.7	2.1	2.5	2.8	0.0	3.5	3.5	20	3.7	Ss = 0.0	0.0
Pressures (Zone 2	-20.9	-19.7	-19.7	-19.8	-19.8	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	-25.7	-24.2	-24.2	-24.3	-24.3	0 91-	-16.9	-17.0	-17.0	-17.0	-17.1	-31.4	-29.6	-29.6	1.90-	-29.7	-20.7	-20.7	-20.8	-20.8	-20.9	Se= 0.1	0.7	1.2	1.7	2.1	2.5	2.8	0.0	7.5	3.5	20	3.7	Ss = 0.1	0.2
CT = 1US	Zone 3	-33.3	-30.8	-30.8	-30.9	-30.9	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	40.7	-37.7	-37.7	-37.7	-37.8	016-	-16.9	-17.0	-17.0	-17.0	-17.1	49.6	45.9	46.0	46.0	-46.1	-20.7	-20.7	-20.8	-20.8	502-	Se=0.2	0.9	1.4	1.8	2.2	2.6	2.9	1.0		3.6		3.7	Ss = 0,2	0.5
Down	(psf)	13.9	13.8	13.7	13.6	13.6	14.4	14.3	14.2	14.1	13.9	13.8	13.9	13.8	13.7	13.6	13.6	16.8	16.7	16.6	16.4	16.3	16.2	13.8	13.8	13.7	13.6	13.4	19.7	19.5	19.4	19.3	19.1	Sc=03	1.1	1.6	2.0	2.4	2.7	3.0	7.0	4.0	3.0	00	9.6 6.6	Ss= 0,3	0.7
a 5	Zone 1	-11.1	-9.8	6.6-	6.6-	6.6-	-11.2	-11.3	-11.3	-11.4	-11.4	-11.4	-16.0	-14.3	-14.3	-14.3	-14.4	116.2	-16.2	-16.2	-16.3	-16.3	-16.4	-19.2	17.1	-17.2	-17.2	-17.3	-19.3	-19.4	-19.4	-19.5	-19.5	Sc=0.4	1.2	1.7	2.1	2.5	2.9	1.5	4.0	0.0	3.8	0.0	4.0	Ss = 0.4	0.9
Pressures (Zone 2	-20.9	-19.7	-19.7	-19.8	-19.8	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	-29.8	-28.1	-28.1	-28.1	-28.2	7.02-	-19.7	-19.7	-19.7	-19.8	-19.8	-35.5	-33.5	-33.5	-33.6	-33.6	-23.4	-23.5	-23.5	-23.5	-23.6	Sc= 0.5	13	1.8	2.3	2.7	3.0	3.3	0.0	1.0	3.9	20	4.1	Ss = 0.5	1.0
nt = 501 psf)	Zone 3	-33.3	-30.8	-30.8	-30.9	-30.9	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	47.1	-43.6	-43.7	-43.7	43.7	10.6	-19.7	-19.7	-19.7	-19.8	-19.8	-56.0	-51.9	-51.9	075-	-52.0	-23.4	-23.5	-23.5	-23.5	-23.6	Se= 1.0	1.9	2.3	2.7	3.1	3.4	1.5	n •	1.4	4.2	N.A.	4.5	Ss = 1.0	1.6
Down	(pst)	13.9	13.8	13.7	13.6	13.6	14.4	14.3	14.2	14.1	13.9	13.8	13.9	13.8	13.7	13.6	13.6	18.0	18.7	18.6	18.5	18.4	18.3	13.8	14.0	12.0	13.8	13.7	21.7	21.6	21.5	21.4	21.1	Sc = 1.25	2.1	2.5	2.9	3.3	3.6	3.9	14	0.4	4.4	2 V C	4.6	Ss = 1.25	1.8
0 5	Zone 1	-13.7	-12.2	-12.2	-12.3	-12.3	-13.9	-13.9	-14.0	-14.0	-14.0	-14.1	-18.6	-16.7	-16.7	-16.7	-16.7	0'01-	-18.8	-18.9	-18.9	-19.0	-19.0	-21.8	-19.5	-19.5	961-	-19.6	-22.0	-22.0	-22.1	-22.1	1.22-	Sc= 1 5	2.5	2.8	3.2	3.5	9,6	1.4	t u	04	4.0	0 V	4.9	Ss= 1.5	2.2
Pressures (Zone 2	-25.7	-24.2	-24.2	-24.3	-24.3	-16.9	-16.9	-17.0	-17.0	-17.0	-17.1	-34.6	-32.6	-32.6	-32.6	-32.7	1.26-	-22.8	-22.9	-22.9	-23.0	-23.0	-40.3	-38.0	-38.0	-38.1	-38.1	-26.6	-26.6	-26.7	-26.7	-26.8	Sc = 2.0	3.2	3.6	3.9	4.2	4,4	4.7	4 0	0.0	5.2	10	2. C. S	Ss = 2.0	2.9
psf)	Zone 3	40.7	-37.7	-37.7	-37.7	-37.8	-16.9	-16.9	-17.0	-17.0	-17.0	-17.1	-54.5	-50.5	-50.5	-50.6	-50.6	8 44	-22.8	-22.9	-22.9	-23.0	-23.0	-63.4	-58.8	-58.8	58.8	-58.9	-26.6	-26.6	-26.7	-26.7	-26.8	54=25	4.0	4.3	4.6	4.9	5.1	n 1	0.0	0.0	5.8		5.9 6.2	Ss=2.5	3.6
Down	(psf)	13.9	13.8	13.7	13.6	13.6	16.8	16.7	16.6	16.4	16.3	16.2	13.9	13.8	13.7	13.6	13.6	4.CT	21.1	21.0	20.9	20.8	20.6	13.8	15.3	15.3	151	15.0	24.1	24.0	23.9	23.7	23.5	Se=3	4.8	5.2	5.5	5.8	0.9	6.2	0.0	0.0	0.0		6.7	Ss = 3.	4.5

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE _ _ _ _ _

BIdg. Height. Ef. ft. BIdg. Height. Ef. ft. BIdg. Height. Erme 2 $Up Pressures (pst) Down Up Pressures (pst) Up Pressures (pst) Down Up Pressures (pst) Up Pressures (pst) Down Up Pressures (pst) Up Total 2009 Up Total 2009 Up Pressures (pst) Up Total 2009 Up Total 2009 Up Total 2009 $	t = 30 ft. Bldg. Height = 60 ft.	Zone 3 (psf) Zone 1 Zone 2 Zone 3	-33.3 24.4 -13.7 -25.7 -40.7	-30.8 23.2 -12.2 -24.2 -37.7	-30.8 21.9 -12.2 -24.2 -37.7	-30.9 20.5 -12.3 -24.3 -37.7	-30.9 19.2 -12.3 -24.3 -37.8	-30.5 18.0 -12.3 -24.3 -37.8	6:01- 6:01- 6:01- 0:/1 /:C1-	138 157 -140 -170 -170	0'/T- 0'/T- 0'+T- /'CT 0'CT-	13.0 14.9 -14.0 -17.0 -17.0 -17.0	1.71- 1.71- 0.41- 0.41- 1.3.9 13.8 -14.1 -17.1 -17.1	474 74 405 245 E4E	C.4C- 0.4E- 0.8I- 4.42 I.44- 2 0.2 2 C 7 2 C C C 2 C 2 C 2 C 2 C 2 C 2 C	43.7 21.9 -16.7 -32.6 -50.5	-43.7 20.5 -16.7 -32.6 -50.6	-43.7 19.2 -16.7 -32.7 -50.6	-43.8 18.0 -16.8 -32.7 -50.6	-19.6 21.0 -18.8 -22.8 -22.8	-19.7 19.9 -18.8 -22.8 -22.8	-19.7 18.5 -18.9 -22.9 -22.9	-19.8 18.4 -19.0 -23.0 -23.0	-19.8 18.3 -19.0 -23.0 -23.0	-56.0 23.1 -21.8 -40.3 -63.4	-51.9 22.2 -19.5 -38.0 -58.8	-51.9 21.0 -19.5 -38.0 -58.8	-51.9 19.8 -19.6 -38.0 -58.8	-52.0 18.6 -19.6 -38.1 -58.8 E2.0 17.4 16.6 201 E0.0	-23.4 22.5 -22.0 -26.6 -26.6	-23.5 21.6 -22.0 -26.6 -26.6	-23.5 21.5 -22.1 -26.7 -26.7	-23.5 21.4 -22.1 -26.7 -26.7	-23.6 21.2 -22.1 -26.8 -26.8	-23.6 21.1 -22.2 -26.8 -26.8	5s = 1.0 Ss = 1.25 Ss = 1.5 Ss = 2.0 Ss = 2.5 S	2.6 2.8 3.1 3.6 4.1	3.9 4.0 4.3 4.9 5.4 AG E1 E2 EQ EA	F7 F0 F3 F7 73	6.4 6.5 6.8 7.4 7.9	7.0 7.0 7.3 7.8 8.4	7.3 7.3 7.6 8.1 8.6	7.6 7.6 7.8 8.3 8.8		7.7 7.9 8.4 8.9	7.7 7.7 7.9 8.4 8.9 7.7 7.7 7.9 8.4 8.9	7.7 7.7 7.9 8.4 8.9 7.7 7.7 7.9 8.4 8.9 7.6 7.6 7.8 8.3 8.8 7.6 7.6 7.8 8.3 8.8	7.7 7.7 7.9 8.4 8.9 7.7 7.7 7.9 8.4 8.9 7.7 7.7 7.9 8.4 8.9 7.6 7.6 7.8 8.3 8.8 7.5 7.5 7.7 8.2 8.7
BIGI: Height = 15 ft Cone 2 Cone 3 <th colspan="</td> <td>Bldg. Height Up Pressures (psf</td> <td>Zone 1 Zone 2</td> <td>-11.1 -20.9</td> <td>-9.8 -19.7</td> <td>-9.9 -19.7</td> <td>-9.9 -19.8</td> <td>-9.9 -19.8</td> <td>2 61 6 11</td> <td>1.21- 2.11-</td> <td>112 -128</td> <td>0.01- 0.11-</td> <td>-11.4 -13.8</td> <td>-11.4 -13.9</td> <td>16.0 20.0</td> <td>1 00 0.01-</td> <td>-14.3 -28.1</td> <td>-14.3 -28.1</td> <td>-14.4 -28.2</td> <td>-14.4 -28.2</td> <td>-16.2 -19.6</td> <td>-16.2 -19.7</td> <td>-16.3 -19.7</td> <td>-16.3 -19.8</td> <td>-16.4 -19.8</td> <td>-19.2 -35.5</td> <td>-17.1 -33.5</td> <td>-17.2 -33.5</td> <td>-17.2 -33.5</td> <td>-17.2 -33.6</td> <td>-193 -23.4</td> <td>-19.4 -23.5</td> <td>-19.4 -23.5</td> <td>-19.5 -23.5</td> <td>-19.5 -23.6</td> <td>-19.5 -23.6</td> <td>is = 0.4 Ss = 0.5 S</td> <td>2.1 2.2</td> <td>3.3 3.4 AG AG</td> <td>0.1 N N</td> <td>6.4 6.4</td> <td>7.0 7.0</td> <td>7.3 7.3</td> <td>7.6 7.6</td> <td>TT 77</td> <td>111 111</td> <td>1.7 7.7</td> <td>7.7 7.7 7.6 7.6 7.5 7.5</td> <td>7.5 7.7 7.6 7.6 7.5 7.5 7.5 7.5</td>	Bldg. Height Up Pressures (psf	Zone 1 Zone 2	-11.1 -20.9	-9.8 -19.7	-9.9 -19.7	-9.9 -19.8	-9.9 -19.8	2 61 6 11	1.21- 2.11-	112 -128	0.01- 0.11-	-11.4 -13.8	-11.4 -13.9	16.0 20.0	1 00 0.01-	-14.3 -28.1	-14.3 -28.1	-14.4 -28.2	-14.4 -28.2	-16.2 -19.6	-16.2 -19.7	-16.3 -19.7	-16.3 -19.8	-16.4 -19.8	-19.2 -35.5	-17.1 -33.5	-17.2 -33.5	-17.2 -33.5	-17.2 -33.6	-193 -23.4	-19.4 -23.5	-19.4 -23.5	-19.5 -23.5	-19.5 -23.6	-19.5 -23.6	is = 0.4 Ss = 0.5 S	2.1 2.2	3.3 3.4 AG AG	0.1 N N	6.4 6.4	7.0 7.0	7.3 7.3	7.6 7.6	TT 77	111 111	1.7 7.7	7.7 7.7 7.6 7.6 7.5 7.5	7.5 7.7 7.6 7.6 7.5 7.5 7.5 7.5
Bidg. Heig thria 11 Up Pressures (gsf) Up Pressures (gsf) Up Pressures (gsf) Up Pressures (gsf) Operation (gsf) -19.8 -19.7 -9.8 -19.7 -30.8 -9.9 -19.7 -30.8 -9.9 -19.7 -30.8 -9.9 -19.7 -30.8 -9.9 -19.8 -30.9 -9.9 -19.8 -30.9 -10.0 -19.8 -30.9 -11.1 -13.7 -13.7 -11.1.2 -13.3 -13.3 -11.1.2 -13.3 -13.3 -11.1.2 -13.3 -13.3 -11.1.3 -13.3 -13.3 -11.1.4 -13.3 -13.3 -11.1.4 -13.3 -13.3 -11.1.4 -13.3 -13.3 -11.1.4 -13.3 -13.3 -11.1.4 -13.3 -13.2 -11.1.3 -13.4 -13.5 -11.1.1 <td>5 ft. Down</td> <td>(psf)</td> <td>24.4</td> <td>23.2</td> <td>21.9</td> <td>20.5</td> <td>19.2</td> <td>17.6</td> <td>16.6</td> <td>15.7</td> <td>1.01</td> <td>14.9</td> <td>13.8</td> <td>A A C</td> <td>24.4</td> <td>21.9</td> <td>20.5</td> <td>19.2</td> <td>18.0</td> <td>19.4</td> <td>18.4</td> <td>16.7</td> <td>16.3</td> <td>16.2</td> <td>23.1</td> <td>22.0</td> <td>20.8</td> <td>19.6</td> <td>17.2</td> <td>21.0</td> <td>20.0</td> <td>19.4</td> <td>19.3</td> <td>19.2</td> <td>19.1</td> <td>2 5s=0.3 5</td> <td>61</td> <td>3.5</td> <td>0.4 1</td> <td>6.4</td> <td>7.0</td> <td>7.3</td> <td>7.6</td> <td>7.7</td> <td></td> <td>1.7</td> <td>7.7 7.6 7.5</td> <td>7.7 7.6 7.5</td>	5 ft. Down	(psf)	24.4	23.2	21.9	20.5	19.2	17.6	16.6	15.7	1.01	14.9	13.8	A A C	24.4	21.9	20.5	19.2	18.0	19.4	18.4	16.7	16.3	16.2	23.1	22.0	20.8	19.6	17.2	21.0	20.0	19.4	19.3	19.2	19.1	2 5s=0.3 5	61	3.5	0.4 1	6.4	7.0	7.3	7.6	7.7		1.7	7.7 7.6 7.5	7.7 7.6 7.5
Bld Zone 1 Zone 1 Zone 1 Zone 1 2000	dg. Height = 1 Pressures (psf)	Zone 2 Zone:	-20.9 -33.3	-19.7 -30.8	-19.7 -30.8	-19.8 -30.9	-19.8 -30.9	-137 - 12 - 127	137 132 1327	13.8 13.8	0.01 0.01	-12.0 12.0	-13.9 -13.9	707 402	1.04- 1.62-	-24.7 -37.7	-24.3 -37.7	-24.3 -37.8	-24.3 -37.8	-16.9 -16.9	-16.9 -16.9	0.71- 0.71-	-17.0 -17.0	-17.1 -17.1	-31.4 -49.6	-29.6 -45.9	-29.6 -46.0	-29.6 -46.0	70.7 46.0	-20.7 -20.7	-20.7 -20.7	-20.8 -20.8	-20.8 -20.8	-20.8 -20.8	-20.9 -20.9	Ss = 0.1 Ss = 0	1.8 1.8	3.3 3.3	5.6 F.6	6.4 6.4	7.0 7.0	7.3 7.3	7.6 7.6	T.T T.T		14 14	7.6 7.6 7.6	7.6 7.6 7.5 7.5 7.5 7.5
	Up	Zone 1	-11.1	-9.8	6.6-	6.6-	6.6-	-11.2	2113	-11.2	C.11-	4'TT-	-11.4	7.01	-13./	-12.2	-12.3	-12.3	-12.3	-13.9	-13.9	-14.0	-14.0	-14.1	-16.9	-15.1	-15.1	-15.1	-15.2	-17.0	-17.1	-17.1	-17.2	-17.2	-17.2	Ss = 0.0	1.8	2.2	o u	6.4	7.0	7.3	7.6	7.7	7.7		7.6	7.5
		L					Set 1		-~6					1	U	pa	nd	Do	wn	(p	sf)	-					- 14			Sat	-60								Sid	le L	oa	d ()	pst	f)				

APPENDIX B PRESCRIPTIVE PRESSURE TABLES ----

Bldg. Height = 15	Jp Pressures (pst) Zone 2 Zone 3	-20.9 -33.3	-19.7 -30.8	-19.7 -30.8	-19.8 -30.9	-19.8 -30.9	-13.7 -13.7	-13.7 -13.7	-13.8 -13.8	-13.8 -13.8	-13.9 -13.9	5'CT- 5'CT-	-24.2 -37.7	-24.2 -37.7	-24.3 -37.7	-24.3 -37.8	-24.3 -37.8	-16.9 -16.9	-16.9 -16.9	-17.0 -17.0	-17.0 -17.0	-17.1 -17.1	-31.4 -49.6	-29.6 -45.9	-29.6 -46.0	-29.7 -46.0	-29.7 -46.1	-20.7 -20.7	-20.7 -20.7	-20.8 -20.8	-20.8 -20.8	-20.9 -20.9	0 Ss=0,1 Ss=0.2	2.6 2.6	4.9 4.9	6.8 6.8	8.2 8.2 9.3 9.3	10.1 10.1	10.6 10.6	10.8 10.8	10.9 10.9	10.8 10.8	10.6 10.6	0 Ce=01 Ce=0	0.2 0.5	
5 ft.	(psf)	32.2	30.3	28.2	26.1	24.1	21.2	19.7	18.3	17.0	16.0	1.61	30.3	28.2	26.1	24.1	22.2	23.0	21.4	18.8	17.8	16.9	30.1	28.4	26.5	22.8	21.0	24.2	22.8	20.4	19.4	19.1	2 55= 0.3	2.6	4.9	6.8	2.8	10.1	10.6	10.8	10.9	10.8	10.6	Cr-13	0.7	
Blc	Zone1	-11.1	-9.8	6.6-	6.6-	-9.9	-11.2	-11.3	-11.3	-11.4	-11.4	100	-14.3	-14.3	-14.3	-14.4	-14.4	-16.2	-16.2	-16.3	-16.3	-16.4	-19.2	-17.1	-17.2	-17.2	-17.3	-19.3	-19.4	-19.5	-19.5	-19.5	Ss = 0.4	2.7	4.9	6.8	2.8	10.1	10.6	10.8	10.9	10.8	10.5	Ce - D A	0.9	spe
dg. Heig	Zone 2	-20.9	-19.7	-19.7	-19.8	-19.8	-13.7	-13.7	-13.8	-13.8	-13.9	5.61-	-28.1	-28.1	-28.1	-28.2	-28.2	-19.6	-19.7	-19.7	-19.8	-19.8	-35.5	-33.5	-33.5	-33.6	-33.6	-23.4	-23.5	-23.5	-23.6	-23.6	Ss = 0,5	2.8	4.9	8.9	7.8	10.1	10.6	10.8	10.9	10.8	10.6	20-02	1.0	snow lo inde veri
ht = 30 f	st) Zone 3	-33.3	-30.8	-30.8	-30.9	-30.9	-13.7	-13.7	-13.8	-13.8	-13.0	CC1-	43.6	-43.7	-43.7	-43.7	-43.8	-19.6	-19.7	-19.7	-19.8	-19.8	-56.0	-51.9	-51.9	-52.0	-52.0	-23.4	-23.5	-23.5	-23.6	-23.6	55=1.0	3.3	2.1	8.9	2.5	10.1	10.6	10.8	10.9	10.8	10.6	Ce-10	1.6	within region wind
t.	(psf)	32.2	30.3	28.2	26.1	24.1	21.2	19.7	18.3	17.0	15.0	1.01	30.3	28.2	26.1	24.1	22.2	24.6	23.0	20.4	19.3	18.4	30.1	28.6	26.7	23.0	21.2	25.7	24.3	21.9	21.2	21.1	Ss = 1,25	3.4	5.2	6.8	8.2	10.1	10.6	10.8	10.9	10.8	10.6	Se = 1.05	1.8	Groun * This inclusiv
8	Zone 1	-13.7	-12.2	-12.2	-12.3	-12.3	-13.9	-13.9	-14.0	-14.0	-14.0	T-67-	-16.7	-16.7	-16.7	-16.7	-16.8	-18.8	-18.8	-18.9	-19.0	-19.0	-21.8	-19.5	-19.5	-19.6	-19.6	-22.0	-22.0	-22.1	-22.1	-22.2	Ss = 1.5	3.7	5.5	7.0	2.8	10.1	10.6	10.8	10.9	10.8	10.5	Cr = 1.0	2.2	Basic
dg. Heig	Zone 2	-25.7	-24.2	-24.2	-24.3	-24.3	-16.9	-16.9	-17.0	-17.0	-17.1	11/1-	-32.6	-32.6	-32.6	-32.7	-32.7	-22.8	-22.8	-22.9	-23.0	-23.0	-40.3	-38.0	-38.0	-38.1	-38.1	-26.6	-26.6	-26.7	-26.8	-26.8	Ss = 2,0	4.3	1.9	7.5	9.6	10.2	10.6	10.8	10.9	10.8	10.6	0 C - 2 0	2.9	
ht = 60 f	ost) Zone 3	40.7	-37.7	-37.7	-37.7	-37.6	-16.9	-16.9	-17.0	-17.0	-17.1	1.11-	-50.5	-50.5	-50.6	-50.6	-50.6	-22.8	-22.8	-22.9	-23.0	-23.0	-63.4	-58.8	-58.8	-58.8	-58.9	-26.6	-26.6	-26.7	-26.8	-26.8	Ss=2,5	4.8	9.9	8.1	101	10.7	11.1	11.3	11.3	11.2	11.0	3 6 - 32	3.6	ASC
تو.	(psf)	32.2	30.3	28.2	26.1	24.1	23.0	21.4	20.0	18.8	16.0	C'01	30.3	28.2	26.1	24.1	22.2	26.3	24.8	22.2	21.1	20.6	30.1	29.6	27.7	23.9	22.2	27.5	26.1	23.7	23.6	23.5	Ss = 3.1	5.5	1.3	00 00	10.8	11.4	11.7	11.9	11.9	11.8	11.6	Ce-21	4.5	Mass

		_		Ex	po	sur	e (Cat	ego	ry	В					E	xpo	sur	e C	ate	gory	C	_				Exp	oos	ure	Cat	ego	ry C)						Do	own	n Slo	ope	-				Late	cal.	
Roof Pitch	200	71:1	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	7:12	8:12	9:12	10:12	11:12	Roof Pitch	1.12	2:12	3:12	4:12	5:12	6:12	8-12	9-12	10:12	11:12	12:12			
Up Zone 1		111-	-9.8	6.6-	-9.9	6.6-	-10.0	-11.2	-11.3	-11.3	-11.4	-11.4	-11.4	-13.7	-12.2	-12.2	-12.3	-12.3	-12.3	-13.9	14.0	-14.0	-14.0	-14.1	-16.9	-15.1	-15.1	-15.1	-15.2	-17.0	-17.1	-17.1	-17.2	-17.2	-11.2	3.8	7.1	9.7	11.8	13.3	14.3	15.1	15.2	15.0	14.6	14.1	Ss = 0.0	0.0	
Pressures (Zone 2	000	5.02-	-19.7	-19.7	-19.8	-19.8	-19.8	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	-25.7	-24.2	-24.2	-24.3	-24.3	-24.3	-16.9	-16.9	-17.0	-17.0	-17.1	-31.4	-29.6	-29.6	-29.6	1.62-	-20.7	-20.7	-20.8	-20.8	-20.8	-20.3	3.8	1.7	9.7	11.8	13.3	14.3	15.1	15.2	15.0	14.6	14.1	55=0.1	0.7	
psf) Zone3		-33.3	-30.8	-30.8	-30.9	-30.9	-30.9	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	40.7	-37.7	-37.7	-37.7	-37.8	-37.8	-16.9	-15.0	-17.0	-17.0	-17.1	-49.6	45.9	-46.0	46.0	46.0	-20.7	-20.7	-20.8	-20.8	-20.8	C U= 35	4.1	7.1	9.7	11.8	13.3	14.3	15.1	15.7	15.0	14.6	14.1	5s = 0.2	1.5	
Down (psf)		40.0	41.9	37.8	33.6	30.6	27.8	26.0	23.7	21.7	19.9	18.4	17.1	45.5	41.9	37.8	33.6	30.6	27.8	27.8	25.5	21.7	20.2	18.9	41.4	38.0	34.4	31.4	28.1	28.5	26.4	24.6	23.0	21.6	5c=03	4.6	7.1	9.7	11.8	13.3	14.3	15.1	15.2	15.0	14.6	14.1	Ss= 0.3	2.1	
Up Zone 1		111-	-9.8	6.9-	6.6-	6.6-	-10.0	-11.2	-11.3	-11.3	-11.4	-11.4	-11.4	-16.0	-14.3	-14.3	-14.3	-14.4	-14.4	-16.2	-16.2	-16.3	-16.3	-16.4	-19.2	-17.1	-17.2	-17.2	-11.2	-19.3	-19.4	-19.4	-19.5	-19.5	C.61-	20	7.4	9.7	11.8	13.3	14.3	15.1	15.2	15.0	14.6	14.1	Ss = 0.4	2.7	specific ins location
Pressures (Zone 2	0.00	5.02-	-19.7	-19.7	-19.8	-19.8	-19.8	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	-29.8	-28.1	-28.1	-28.1	-28.2	-28.2	-19.6	10.7	-10.7	-19.8	-19.8	-35.5	-33.5	-33.5	-33.5	-33.6	-23.4	-23.5	-23.5	-23.5	-23.6	-23.0	5.4	7.8	9.7	11.8	13.3	14.3	15.1	15.2	15.0	14.6	14.1	Ss = 0.5	3.2	snow loads she independa verifed for
osf) Zone 3		-33.3	-30.8	-30.8	-30.9	-30.9	-30.9	-13.7	-13.7	-13.8	-13.8	-13.9	-13.9	47.1	-43.6	-43.7	-43.7	-43.7	-43.8	-19.6	-19.7	-19.7	-19.8	-19.8	-56.0	-51.9	-51.9	-51.9	-52.0	-23.4	-23.5	-23.5	-23.5	-23.6	-23.D	8.9	9.1	11.0	12.4	13.4	14.3	15.1	15.7	15.0	14.6	14.1	Ss = 1.0	5.0	within the sta region. The wind speeds
Down (psf)	1.14	40.0	41.9	37.8	33.6	30.6	27.8	26.0	23.7	21.7	19.9	18.4	17.1	45.5	41.9	37.8	33.6	30.6	27.8	29.4	27.0	23.3	21.7	20.4	41.4	38.0	34.4	31.6	28.82	30.1	28.0	26.1	24.5	23.2	54 = 1.25	7.3	9.7	11.5	12.9	13.9	14.5	15.1	15.2	15.0	14.6	14.1	Ss = 1.25	5.7	Ground Snow * This table it inclusive of all
Zone 1	101	-13./	-12.2	-12.2	-12.3	-12.3	-12.3	-13.9	-13.9	-14.0	-14.0	-14.0	-14.1	-18.6	-16.7	-16.7	-16.7	-16.7	-16.8	-18.8	-18.8	-18.9	-19.0	-19.0	-21.8	-19.5	-19.5	-19.6	-19.6	-22.0	-22.0	-22.1	-22.1	-22.1	-44.4	82	10.5	12.3	13.7	14.6	15.1	15.4	15.2	15.0	14.6	14.1	Ss= 1.5	6.9	Basic Wind Sp 60 psf
Pressures (p Zone 2		1.62-	-24.2	-24.2	-24.3	-24.3	-24.3	-16.9	-16.9	-17.0	-17.0	-17.0	-17.1	-34.6	-32.6	-32.6	-32.6	-32.7	-32.7	-22.8	-22.8	-229	-23.0	-23.0	-40.3	-38.0	-38.0	-38.0	-38.1	-26.6	-26.6	-26.7	-26.7	-26.8	0.02-	6.6	12.2	13.9	15.2	16.0	16.5	16.5	163	15.9	15.4	14.8	Ss = 2.0	9.1	90 mp
asf) Zone 3	101	40.1	-37.7	-37.7	-37.7	-37.8	-37.8	-16.9	-16.9	-17.0	-17.0	-17.0	-17.1	-54.5	-50.5	-50.5	-50.6	-50.6	-50.6	-22.8	-22.8	-22.9	-23.0	-23.0	-63.4	-58.8	-58.8	-58.8	-58.8	-26.6	-26.6	-26.7	-26.7	-26.8	54=2 E	11.9	13.8	15.5	16.7	17.4	17.8	17.7	17.3	16.9	16.3	15.7	55=2.5	11.4	ASCE
Down (psf)	1.14	0.04	41.9	37.8	33.6	30.6	27.8	27.8	25.5	23.5	21.7	20.2	18.9	45.5	41.9	37.8	33.6	30.6	27.8	31.1	28.8	25.0	23.5	22.2	41.4	38.1	35.4	32.5	29.8	31.8	29.8	27.9	26.3	24.9	44 = 3 1	14.7	15.9	17.4	18.5	19.1	19.4	19.4	18.6	18.1	17.4	16.7	Ss=3.1	14.2	Mid US (H Snow)

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE

L. Down	(psf)	24.4	23.2	21.9	20.5	19.2	18.0	21.8	0.02	19.6	19.5	19.4	24.4	24.9	23.6	22.2	20.9	19.7	25.9	55.7	25.1	25.0	24.9	23.1	25.2	24.0	22.8	21.6	29.0	28.9	28.7	28.6	28.5	1.02	25=30	6.4	7.1	7.9	8.6	9.0	9.3	9.4	2.5	0.0	0.0	50 = 3	4.5	(Medium Sno
t = 60 fl	Zone 3	-50.5	46.8	-46.8	46.9	46.9	-46.9	-21.1	1.12-	2.12-	-21.2	-21.3	67.6	-62.7	-62.7	-62.7	-62.7	-62.8	-28.4	-28.5	-28.5	-28.6	-28.6	-78.5	-72.8	-72.9	-72.9	6.7/-	-33.1	-33.1	-33.2	-33.2	-33.3	23.3	C'7 = 50	4.1	6.4	7.3	7.9	8.4	8.6	8.8	6.9	n a	8.7	5c=2.5	3.6	ACCE 7 0
Ig. Heigh ressures (ps	Zone 2	-32.0	-30.2	-30.2	-30.2	-30.3	-30.3	-21.1	117-	212-	-212	-21.3	43.0	40.5	-40.6	-40.6	-40.6	-40.7	-28.4	-28.5	-28.5	-28.6	-28.6	-50.0	-47.2	47.2	47.2	4/3	-33.1	-33.1	-33.2	-33.2	-33.3	-33.3	0'7 = 50	4.9	5.9	6.7	7.4	7.8	8.1	e. 9	8.4	4.0 5.3	C 8	Se = 2.0	2.9	100 mph
UpP	Zone 1	-17.2	-15.4	-15.4	-15.4	-15.5	-15.5	-17.4	417-	5/1-	-17.5	-17.6	-733	-20.9	-20.9	-20.9	-20.9	-21.0	-23.5	23.6	-23.6	-23.6	-23.7	-27.2	-24.4	-24.4	-24.4	-24.5	-27.4	-27.4	-27.5	-27.5	-27.6	0'17-	CT=50	4.3	53	6.2	6.8	7.3	7.6	7.8	61	n a r	2.1	Se= 1.5	22	Basic Wind Spee
L. Down	(psf)	24.4	23.2	21.9	20.5	19.2	18.0	19.6	0.0T	16.8	16.5	16.4	24.4	23.7	22.4	21.0	19.7	18.5	23.7	22.3	22.1	22.0	21.9	23.1	24.0	22.8	21.5	20.4	26.0	25.9	25.8	25.7	25.6	4.C2	C7'T = SC	40	5.1	5.9	6.5	7.0	7.3	7.6	1.1	1.1	25	Sc = 1.75	1.8	Ground Snow Los * This table is r
nt = 30 f	Zone3	41.4	-38.3	-38.4	-38.4	-38.4	-38.5	-17.2	7.11-	-1/3	-173	-17.4	-58.4	-54.2	-54.2	-54.2	-54.3	-54.3	-24.5	C.42-	-24.6	-24.6	-24.7	-69.4	-64.4	-64.4	-64.4	-04.4	-29.2	-29.2	-29.3	-29.3	-29.3	4.67-	0'T = 50	9.5	4.9	5.7	6.4	7.0	7.3	7.6	1.1	1.1	7.5	Sc= 1.0	1.6	within the state region. The lo wind speeds a
dg. Heig	Zone 2	-26.1	-24.6	-24.6	-24.7	-24.7	-24.7	-17.2	717-	-17.9	-17.3	-17.4	-37.1	-35.0	-35.0	-35.0	-35.1	-35.1	-24.5	9 76-	-24.6	-24.6	-24.7	-44.2	-41.6	41.7	41.7	1.10	-29.2	-29.2	-29.3	-29.3	-29.3	4.67-	C'D = 50	77	4.6	5.6	6.4	7.0	7.3	7.6	1.1	1.1	35	Se = 0.5	1.0	snow loads shou independant verifed for th
np1	Zone1	-14.0	-12.4	-12.5	-12.5	-12.5	-12.6	1.4.1	7'4T-	2.41-	-14.3	-14.3	002-	-17.9	-17.9	-18.0	-18.0	-18.0	-20.2	502-	-20.3	-20.4	-20.4	-24.0	-21.5	-21.5	-21.5	212-	-24.1	-24.2	-24.2	-24.3	-24.3	E.42-	55 = U.4	17	4.6	5.6	6.4	7.0	7.3	2.6	1.1	1.1	15	5c=0.4	0.9	specific insta location.
L. Down	(psf)	24.4	23.2	21.9	20.5	19.2	18.0	19.6	10.01	16.8	16.5	16.4	24.4	23.2	21.9	20.5	19.2	18.0	21.8	19.8	19.6	19.5	19.4	23.1	22.9	21.7	20.5	10.7	23.8	23.4	23.2	23.1	23.0	6.0-+3	55=0.5	53 33	4.6	5.6	6.4	7.0	7.3	7.6	1.1	1.1	7.5	5c=03	0.7	
ht = 15 t sf)	Zone 3	41.4	-38.3	-38.4	-38.4	-38.4	-38.5	-17.2	7.11-	-173	-173	-17.4	505	46.8	-46.8	-46.9	-46.9	-46.9	-21.1	1.12-	-21.2	-21.2	-21.3	-61.5	-57.0	-57.0	-57.1	1.12	-25.8	-25.8	-25.9	-25.9	-25.9	0.02-	25 = 0.4	1.8	4.6	5.6	6.4	7.0	7.3	7.6	1.1	1.1	34	C U = 35	0.5	
Pressures (p	Zone 2	-26.1	-24.6	-24.6	-24.7	-24.7	-24.7	-17.2	7.17-	-173	-173	-17.4	32.0	-30.2	-30.2	-30.2	-30.3	-30.3	-21.1	C1C-	-21.2	-21.2	-21.3	-39.1	-36.8	-36.9	-36.9	-30.9	-25.8	-25.8	-25.9	-25.9	-25.9	0.02-	T'0 = 50	33	4.6	5.6	6.4	7.0	7.3	9.2	1.1	1.1	15	Sc= 0.1	0.2	
np.	Zone 1	-14.0	-12.4	-12.5	-12.5	-12.5	-12.6	-14.1	2'4T-	2.41-	-14.3	-14.3	-17.2	-15.4	-15.4	-15.4	-15.5	-15.5	-17.4	-17.5	-17.5	-17.5	-17.6	-21.1	-18.9	-18.9	-19.0	0.61-	-21.3	-21.3	-21.4	-21.4	-21.5	C.12-	0.0 = 25	33 33	4.6	5.6	6.4	7.0	7.3	7.6	1.1	1.1	75	Se = 0.0	0.0	
	Roof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	7:12	21:0	10-12	11:12	12:12	1.12	2:12	3:12	4:12	5:12	6:12	7:12	9-12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	7:12	8:12	9:12	10:12	11:12	14:14	11001 F1001	2:12	3:12	4:12	5:12	6:12	7:12	8:12	21.6	21.11	17.12	74174		
_	Ľ			Ex	po	sure	e Ca	ateg	on	y B					E	кро	sur	e Ca	ateg	ory	с					Exp	posi	ure	Cat	ego	ry E						1	D	owi	n Sl	ope	2	-	-				
														Up	a	nd	Do	wn	(p	sf)																	S	ide	Lo	bad	1 (p	sf)	(La	tera	

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE

Antionic bioling Bloid Height = 30 f. Bloid Bloid <th>= 60 ft.</th> <th>Zone 3</th> <th></th> <th>-56.9 1</th> <th>-56.9</th> <th>-57.0 1</th> <th>-57.0</th> <th>T 0.10</th> <th>25.8 2</th> <th>25.8 2</th> <th>25.9 2</th> <th>25.9 2</th> <th>25.9 2</th> <th>82.0 1</th> <th>-76.1 1</th> <th>-76.1 1</th> <th>-76.1 1</th> <th>-76.2 1</th> <th>-76.2 1</th> <th>-34.6 3</th> <th>-34.6</th> <th>34.7 2</th> <th>34.8 2</th> <th>34.8 2</th> <th>95.3 1</th> <th>-88.4 2</th> <th>88.4 2</th> <th></th> <th>88.5 2 2 88</th> <th>40.3 3</th> <th>40.3 3</th> <th>40.4 3</th> <th>40.4 3</th> <th>40.4 3</th> <th>C.04</th> <th>s=2.5 5s</th> <th>43</th> <th>4.8</th> <th>5.3</th> <th>5.7</th> <th>6.0</th> <th>6.2</th> <th>6.4</th> <th>6.5</th> <th>6.5</th> <th>6.5</th> <th> C.</th> <th>SC C.2=S</th> <th>20</th> <th>511010</th>	= 60 ft.	Zone 3		-56.9 1	-56.9	-57.0 1	-57.0	T 0.10	25.8 2	25.8 2	25.9 2	25.9 2	25.9 2	82.0 1	-76.1 1	-76.1 1	-76.1 1	-76.2 1	-76.2 1	-34.6 3	-34.6	34.7 2	34.8 2	34.8 2	95.3 1	-88.4 2	88.4 2		88.5 2 2 88	40.3 3	40.3 3	40.4 3	40.4 3	40.4 3	C.04	s=2.5 5s	43	4.8	5.3	5.7	6.0	6.2	6.4	6.5	6.5	6.5	C.	SC C.2=S	20	511010
International Interna International International<	dg. Height	Zone 2	-39.0	-36.8	-36.8	-36.8	-36.9	5.05-	- 25.8	25.8	-25.9	-25.9	-25.9	-52.3	-49.3	-49.3	-49.4	-49.4	-49.4	-34.6	-34.6	-34./	-34.8	-34.8	-60.8	-57.4	-57.4	-57.4	-5/,5	40.3	40.3	40.4	-40.4	40.4	COT	3.7	3.7	4.3	4.7	5.1	5.5	5.7	5.9	6.0	6.0	6.1	2 U	0.2 = 25		ASCE 110 m
Image: Field	BI International International	Zone 1	-21.1	-18.9	-18.9	-18,9	-19.0	0.81-	-213	-214	-21.4	-21.4	-215	-28.5	-25.5	-25.5	-25.6	-25.6	-25.6	-28.6	-28.7	-28.1	-28.8	-28.8	-33.2	-29.8	-29.8	-29.8	6.62-	-33.4	-33.4	-33.5	-33.5	-33.5	0.00-	55=1.5 7.5	1	3.7	4.2	4.6	4.9	5.2	5.3	5.4	5.5	5.6	20.00	CT = 50		Basic Wind
BuildyHeight= 15 ft. BuildyHeight= 30 BuildyHeight= 30 </td <td>t. Down</td> <td>(pst)</td> <td>16.5</td> <td>16.1</td> <td>15.5</td> <td>14.9</td> <td>14.3</td> <td>13./</td> <td>19.8</td> <td>19.7</td> <td>19.5</td> <td>19.4</td> <td>19.3</td> <td>16.5</td> <td>18.2</td> <td>17.7</td> <td>17.1</td> <td>16.5</td> <td>16.3</td> <td>26.5</td> <td>26.4</td> <td>26.3</td> <td>26.1</td> <td>25.9</td> <td>16.0</td> <td>19.5</td> <td>19.0</td> <td>18.9</td> <td>10.7</td> <td>30.8</td> <td>30.7</td> <td>30.6</td> <td>30.4</td> <td>30.3</td> <td>7.00</td> <td>Ss = 1.25 2.1</td> <td>2.8</td> <td>3.4</td> <td>3.9</td> <td>4.3</td> <td>4.6</td> <td>4.9</td> <td>5.1</td> <td>5.2</td> <td>5.3</td> <td>5</td> <td>5. 1 3C</td> <td>1 0</td> <td></td> <td>Ground Sno * This table nclusive of a</td>	t. Down	(pst)	16.5	16.1	15.5	14.9	14.3	13./	19.8	19.7	19.5	19.4	19.3	16.5	18.2	17.7	17.1	16.5	16.3	26.5	26.4	26.3	26.1	25.9	16.0	19.5	19.0	18.9	10.7	30.8	30.7	30.6	30.4	30.3	7.00	Ss = 1.25 2.1	2.8	3.4	3.9	4.3	4.6	4.9	5.1	5.2	5.3	5	5. 1 3C	1 0		Ground Sno * This table nclusive of a
Bidg. Height = 15 ft. Rod Pheth. Zam 1 Zam 2 Zam 1 Zam 2 Zam	ht = 30 f	Zone 3	-50.3	-46.7	-46.7	-46.7	46.7	2.04	0.12-	110-	-21.1	-21.2	-21.2	-71.0	-65.8	-65.8	-65.9	-65.9	-65.9	-29.9	-29.9	-20.0	-30.0	-30.1	-84.2	-78.1	-78.2	-78.2	- 18.2	-35.5	-35.6	-35.6	-35.7	-35.7	1.00-	55=1.0	2.7	3.3	3.8	4.2	4.5	4.7	4.9	5.0	5.1	5.2	0.0	35= 1.U	1	within the region. Th wind spee
Bildia: Height = 15 Mon	dg. Heig Pressures ()	Zone Z	-31.9	-30.1	-30.1	-30.1	-30.1	-30.2	-21.0	110	-21.1	-21.2	-21.2	45.2	-42.6	-42.6	-42.6	-42.7	-42.7	-29.9	-29.9	-29.9	-30.0	-30.1	-53.7	-50.7	-50.7	-50.7	-50.7	-35.5	-35.6	-35.6	-35.7	-35.7	1.00-	Ss = 0.5	22	2.8	3.3	3.7	4.0	4.3	4.5	4.6	4.7	4.8	0.5	C.0 = 20	sn	now loads s independ verifed fo
Andio Blog. Height = 15 ft. Rodrition Jones Down Rodrition Jones Jones Jones Propriet Jones Jones Jones Jones Propriet Jones Jones Jones Jones Jones Jones Jones Jones Jones	BI do	Zone1	-17.2	-15.3	-15.3	-15.4	-15.4	4'CT-	-17.4	-17.4	-17.4	-17.5	-175	-24.5	-22.0	-22.0	-22.0	-22.0	-22.1	-24.7	-24.7	-24.8	-24.9	-24.9	-29.3	-26.2	-26.2	-26.3	-20.3	-29.4	-29.5	-29.5	-29.6	-29.6	0.62-	5s = 0.4 1 4	2.1	2.7	3.2	3.6	3.9	4.2	4.4	4.5	4.6	4.7	110	0.0	3	specific i locatio
Anticipan Bidig. Height = 15 Roof Pitch Jup Pressures (sfi) Roof Pitch Zone 1 Zone 2 Zone 3 Roof Pitch Zone 1 Zone 2 Zone 3 1112 112 112 30.1 46.7 5112 2122 15.3 30.1 46.7 5112 5123 30.1 46.7 46.7 5112 5123 10.1 210 46.7 5113 5124 30.1 46.7 46.7 511 2112 117.3 210 210 210 8112 17.12 17.4 210 211 211 911.12 17.3 21.1 21.1 21.1 21.1 111.12 11.1 21.1 21.1 21.1 21.1 111.12 21.1 21.1 21.1 21.1 21.1 111.12 21.1 21.1 21.1 21.1 21.1 111.12 21.1 21.1	f. Down	(pst)	16.5	16.1	15.5	14.9	14.3	13./	19.8	19.7	19.5	19.4	19.3	16.5	16.9	16.4	15.8	15.2	14.6	23.5	23.3	23.2	23.0	22.9	16.0	18.2	17.7	17.2	1/1	27.7	27.6	27.5	27.4	27.2	1.12	5s= 0.3 1.3	2.0	2.5	3.1	3.5	3,8	4.1	4.3	4.4	4.5	4.6	24	50=0.3	-	
Bildg. Heig Roof Pitch Done 1 Zone 2 Roof Pitch Zone 3 201 1112 112 112 319 212 15.3 301 301 212 15.3 301 301 212 15.1 15.3 301 212 15.3 301 301 212 15.4 301 301 2512 15.4 301 301 2512 15.4 301 301 2512 15.4 301 301 2512 15.4 301 301 2512 15.4 301 302 2512 15.1 17.4 210 10:12 21.1 21.1 301 2512 111.1 21.1 314 2512 21.1 21.1 314 2512 21.1 21.1 25.1 2512 21.1 21.1 21.1 <t< td=""><td>ht = 15 st)</td><td>Zone3</td><td>-50.3</td><td>-46.7</td><td>-46.7</td><td>46.7</td><td>-46.7</td><td>2.04</td><td>0.12-</td><td>110</td><td>-21.1</td><td>-21.2</td><td>-21.2</td><td>-61.4</td><td>-56.9</td><td>-56.9</td><td>-57.0</td><td>-57.0</td><td>-57.0</td><td>-25.7</td><td>-25.8</td><td>0.25-</td><td>-25.9</td><td>-25.9</td><td>-74.7</td><td>-69.2</td><td>-69.3</td><td>-69.3</td><td>60.4</td><td>-31.4</td><td>-31.5</td><td>-31.5</td><td>-31.6</td><td>-31.6</td><td>O'TC-</td><td>5s = 0.2</td><td>1.8</td><td>2.4</td><td>3.0</td><td>3.4</td><td>3.8</td><td>4.1</td><td>4.3</td><td>4.4</td><td>4.5</td><td>4.6</td><td>0.01-0</td><td>20 = 0.2</td><td>2</td><td></td></t<>	ht = 15 st)	Zone3	-50.3	-46.7	-46.7	46.7	-46.7	2.04	0.12-	110	-21.1	-21.2	-21.2	-61.4	-56.9	-56.9	-57.0	-57.0	-57.0	-25.7	-25.8	0.25-	-25.9	-25.9	-74.7	-69.2	-69.3	-69.3	60.4	-31.4	-31.5	-31.5	-31.6	-31.6	O'TC-	5s = 0.2	1.8	2.4	3.0	3.4	3.8	4.1	4.3	4.4	4.5	4.6	0.01-0	20 = 0.2	2	
Roof Pitch Zone 1 Roof Pitch Zone 1 1:12 2:12 1:12 2:12 2:12 15,3 2:12 15,3 2:12 15,3 2:12 15,3 2:12 15,3 2:12 15,3 2:12 15,4 2:12 15,4 2:12 15,4 2:12 15,1 2:12 15,1 2:12 15,1 2:12 15,1 2:13 2:12 2:14 11:12 2:15 12:12 2:12 12:12 2:13 2:13 2:11 2:14 1:11 1:12 2:12 2:13 2:13 2:13 2:14 11:12 2:15 2:13 2:12 2:13 2:12 2:14 1:112 2:15 2:12 2:13 <tr< td=""><td>dg. Heig</td><td>Zone 2</td><td>-31.9</td><td>-30.1</td><td>-30.1</td><td>-30.1</td><td>-30.1</td><td>-30.2</td><td>0.12-</td><td>110-</td><td>-211</td><td>-21.2</td><td>-21.2</td><td>-39.0</td><td>-36.8</td><td>-36.8</td><td>-36.8</td><td>-36.9</td><td>-36.9</td><td>-25.7</td><td>-25.8</td><td>8.22-</td><td>-25.9</td><td>-25.9</td><td>-47.5</td><td>-44.8</td><td>-44.9</td><td>-44.9</td><td>-44.9</td><td>-31.4</td><td>-31.5</td><td>-31.5</td><td>-31.6</td><td>-31.6</td><td>D'TC-</td><td>55=0.1</td><td>17</td><td>2.4</td><td>3.0</td><td>3.4</td><td>3.8</td><td>4.1</td><td>4.3</td><td>4.4</td><td>4.5</td><td>4.6</td><td>0.0</td><td>1.0 = 50</td><td>10</td><td></td></tr<>	dg. Heig	Zone 2	-31.9	-30.1	-30.1	-30.1	-30.1	-30.2	0.12-	110-	-211	-21.2	-21.2	-39.0	-36.8	-36.8	-36.8	-36.9	-36.9	-25.7	-25.8	8.22-	-25.9	-25.9	-47.5	-44.8	-44.9	-44.9	-44.9	-31.4	-31.5	-31.5	-31.6	-31.6	D'TC-	55=0.1	17	2.4	3.0	3.4	3.8	4.1	4.3	4.4	4.5	4.6	0.0	1.0 = 50	10	
Roof Pitch I112 1112 212 212 312 212 312 212 312 212 312 212 312 212 312 212 1112 212 1112 212 1112 212 212 212 212 212 10012 212 1112 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 211 1112 212 212 212 212 212 212 212 212 212 212 212 212 212 212	9 0	Zone 1	-17.2	-15.3	-15.3	-15.4	-15.4	4.CL-	-17.4	17.4	-17.4	-17.5	-17.5	-21.1	-18.9	-18.9	-18.9	-19.0	-19.0	-21.3	-21.3	4.12-	-21.4	-21.5	-25.8	-23.1	-23.2	-23.2	-23.2	-26.0	-26.1	-26.1	-26.1	-26.2	7.07-	Ss = 0.0	17	2.4	3.0	3.4	3.8	4.1	4.3	4.4	4.5	4.6	00-0	0.0 = 20	2	
Exposure Category B Exposure Category C Exposure Category D Down Slope	1.114	Roof Pitch	1:12	2:12	3:12	4:12	5:12	71:0	8:12	9.12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	10-12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	7:12	8:12	9:12	10:12	11:12	71:71	Roof Pitch	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	Think			
		Ĺ			Exp	oos	ure	Ca	teg	ory	В	1	-	Ĺ		Ex	po	sure	e Ca	ate	gor	уC					Exp	oos	ure	Cat	ego	ry C)						D	owr	n S	lop	e				1		_	

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE _ _ _ _ _ _ _ _

Exposure Category E	oof Pitch	Up	Demetinge (r		Dawn								
Exposure Category E		Zone 1	Zone 2	Zone 3	(psf)	Zone1	Pressures (Zone 2	zone 3	(psf)	Zone 1	p Pressures Zone Z	(pst) Zone 3	(psf)
Exposure Category E	C1-1	-18.9	-35.0	-55.1	24.4	-18.9	-35.0	-55.1	24.4	-23.2	427	672	24.4
Exposure Category E	2:12	-16.9	-33.0	-51.1	23.2	-16.9	-33.0	-51.1	23.2	-20.7	40.3	-62.3	24.9
xposure Category E	3:12	-16.9	-33.0	-51.1	21.9	-16.9	-33.0	-51.1	21.9	-20.8	-40.3	-62.4	23.5
sure Category E	4:12	-16.9	-33.0	-51.2	20.6	-16.9	-33.0	-51.2	20.6	-20.8	40.4	-62.4	22.2
e Category E	5:12	-16.9	-33.1	-51.2	19.3	-16.9	-33.1	-51.2	19.3	-20.8	40.4	-62.4	20.9
ategory E	6:12	-17.0	-33.1	-51.2	18.0	-17.0	-33.1	-51.2	18.0	-20.9	-40.4	-62.4	19.6
gory E	7:12	-19.0	-23.1	-23.1	22.9	-19.0	-23.1	-23.1	22.9	-23.4	-28.2	-28.2	25.8
TY E	8:12	-19.1	-23.1	-23.1	21.9	-19.1	-23.1	-23.1	21.9	-23.4	-28.3	-28.3	25.2
	9:12	-19.1	-23.1	-23.1	21.2	-19.1	-23.1	-23.1	21.2	-23.4	-28.3	-28.3	25.1
3	10:12	-19.2	-23.2	-23.2	21.1	-19.2	-23.2	-23.2	21.1	-23.5	-28.4	-28.4	25.0
	11:12	-19.2	-23.2	-23.2	21.0	-19.2	-23.2	-23.2	21.0	-23.5	-28.4	-28.4	24.9
	12:12	-19.2	-23.3	-23.3	20.9	-19.2	-23.3	-23.3	20.9	-23.6	-28.4	-28.4	24.7
	1:12	-23.2	-42.7	-67.2	24.4	-26.9	49.5	ELL-	24.4	-31.2	-57.3	8.68-	24.4
	2:12	-20.7	-40.3	-62.3	24.9	-24.1	-46.7	-72.1	26.3	-28.0	-54.0	-83.3	27.9
E	3:12	-20.8	-40.3	-62.4	23.5	-24.1	-46.7	-72.1	24.9	-28.0	-54.0	-83.3	26.6
xpc	4:12	-20.8	-40.4	-62.4	22.2	-24.2	-46.7	-72.1	23.6	-28.0	-54.1	-83.3	25.2
su	5:12	-20.8	-40.4	-62.4	20.9	-24.2	-46.8	-72.1	22.3	-28.1	-54.1	-83.4	23.9
re (6:12	-20.9	-40,4	-62.4	19.6	-24.2	-46.8	-72.2	21.0	-28.1	-54.1	-83.4	22.7
Cate	7:12	-23.4	-28.2	-28.2	25.8	-27.1	-32.7	-32.7	28.7	-31.4	-37.9	-37.9	32.6
ego	8:12	-23.4	-28.3	-28.3	25.2	-27.1	-32.8	-32.8	28.6	-31.5	-38.0	-38.0	32.5
ry (9:12	-23.4	-28.3	-28.3	25.1	-27.2	-32.8	-32.8	28.5	-31.5	-38.0	-38.0	32.3
с	10:12	-23.5	-28.4	-28.4	25.0	-27.2	-32.9	-32.9	28.3	-31.5	-38.0	-38.0	32.2
	11:12	-23.5	-28.4	-28.4	24.9	-27.3	-32.9	-32.9	28.2	-31.6	-38.1	-38.1	32.1
	12:12	-23.6	-28.4	-28.4	24.7	-27.3	-32.9	-32.9	28.1	+31.6	-38.1	-38.1	32.0
	1:12	-28.4	-52.1	-81.7	23.1	-32.1	-58.8	-92.2	23.1	-36.4	-66.6	-104.3	24.0
	2:12	-25.4	-49.1	-75.8	25.6	-28.8	-55.5	-85.5	27.0	-32.7	-62.8	-96.7	28.6
Ex	3:12	-25.4	-49.1	-75.8	24.4	-28.8	-55.5	-85.5	25.8	-32.7	-62.8	-96.8	27.4
pos	4:12	-25.5	-49.2	-75.8	23.2	-28.8	-55.5	-85.6	24.6	-32.7	-62.9	-96.8	26.2
sur	5:12	-25.5	-49.2	-75.9	22.0	-28.9	-55.6	-85.6	23.4	-32.7	-62.9	-96.8	25.0
e C	6:12	-25.5	-49.2	-75.9	20.9	-28.9	-55.6	-85.6	22.3	-32.8	-62.9	6'96-	23.9
ate	7:12	-28.5	-34.5	-34.5	30.0	-32.3	-38.9	-38.9	33.4	-36.6	44.1	44.1	37.3
go	8:12	-28.6	-34.5	-34.5	29.9	-32.3	-39.0	-39.0	33.2	-36.6	-44.2	-44.2	37.1
ry [9:12	-28.6	-34.5	-34.5	29.8	-32.4	-39.0	-39.0	33.1	-36.7	-44.2	-44.2	37.0
0	10:12	-28.7	-34.6	-34.6	29.6	-32.4	-39.1	-39.1	33.0	-36.7	-44.3	-44.3	36.9
	11:12	-28.7	-34.6	-34.6	29.5	-32.4	-39.1	-39.1	32.9	-36.8	-44.3	-44.3	36.8
	12:12	-28.7	-34.7	-34.7	29.4	-32.5	-39.2	-39.2	32.8	-36.8	-44.3	-44.3	36.6
8	oof Pitch	Ss = 0.0	Ss = 0.1	Ss = 0,2	55 = 0,3	5s = 0,4	Ss = 0.5	Ss = 1.0	Ss = 1.25	Ss= 1.5	Ss = 2.0	Ss=2.5	55=3,1
	1:12	1.8	1.8	1.8	1.9	2.1	2.2	2.6	2.8	3.1	3.6	4.1	4,8
	2:12	3.3	3.3	3.3	3.3	3.3	3.4	3.9	4.0	4.3	4.9	5.4	6.1
	3:12	4.6	4.6	4.6	4.6	4.6	4.6	4.9	5.1	5.3	5.9	6.4	7.1
Do	4:12	5.6	5.6	5.6	5.6	5.6	5.6	5.7	5.9	6.2	6.7	73	6.7
wn	5:12	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.5	6.8	7.4	57	8.6
SI	6:12	7.0	7.0	7.0	7.0	7.0	1.0	7.0	1.0	13	7.8	8.4	9.0
ope	7:12	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.6	8.1	8.6	9.3
2	8:12	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.8	8.3	8.8	9.4
	9:12	1.7	1.1	1.7	1.7	1.1	1.7	1.7	1.7	6.2	8.4	6.8	9.5
	71:01	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	5.	8.4	2.0	0.0
	11:12	7.5	1.6	1.6	1.6	1.6	1.0	1.6	7.5	1.8	8.3 2 2	0.00 0.00	4.6
		Se = 0.0	Se= 0.1	5c = 0.5	Sc= 0.2	Sc=0.4	Sc=05	Se= 1.0	Sc = 1.25	Sc= 1 5	Sc = 2.0	Se= 7.5	Se = 2.1
		00	0.0	20	20	00	10	16	1.8	00	00	36	A F
	1	0.0	7.0	0.0	1.0	0.0	5	0.T	0.1	7:7	C-7	0.0	2
						specific inst location.	now loads sho independan verifed for t	within the sta region. The I wind speeds	Ground Snow L * This table is inclusive of all	Basic Wind Spe 25 psf	115 mpł	ASCE 7-	New Jerse
						all	uld b tly he	te or ocal and	not areas	eed.	1	05	¥*

APPENDIX B PRESCRIPTIVE PRESSURE TABLES 41

all areas tate or local ds and hould be antly the stall n.

Bldg. He Up Pressure		1.4b- 45.2- 8	0 VV L CC- 1	-22.8 -44.1	-22.8 -44.1	4.1	-25.5 -30.9	-25.6 -30.9	3 -25.6 -30.5	-25.6 -31.0	5 -25.7 -31.0	5 -25.7 -31.1	34.1 -62.5	-30.6 -58.9	-30.6 -58.9	-30.6 -59.0	-30.7 -59.0	3 -30.7 -59.0	-34.3 -41.4	-34.3 -41.4	-34.4 -41.5	-34.5 41.5	1 -34.5 -41.6	-39.8 -72.6	-35.7 -68.5	-35.7 -68.5	3 -35.7 -68.6	-35.8 -08.6	-39.9 -48.1	-40.0 -48.2	-40.0 -48.2	-40.1 -48.	1 -40.1 -48.3	25 Ss = 1.5 Ss = 2.	2.5 3.2	2.8 3.6	3.2 3.9	3.4 4.2	3.7 4.4	3.9 4.6	4.1 4.8	4.2 4.9	4.4 5.0	4.6 5.2	4.6 5.3	25 Ss=1.5 Ss=2.	2.2 2.9	12 Basic Groun
(ht = 30 ft.	list) cauoz	-60.1 13.2	-55.9 14.0	-55.8 14.6	-55.8 14.5	-55.9 14.4	-25.2 23.1	-25.3 22.5	-25.3 22.8	-25.3 22.7	-25.4 22.6	-25.4 22.5	-84.7 13.8	-78.6 19.1	-78.6 19.1	-78.6 19.0	-78.7 18.5	-78.7 18.8	-35.7 31.0	-35.8 30.8	-35.9 30.6	-35.9 30.5	-35.9 30.4	-100.5 14.7	-93.2 22.0	-93.3 21.5	-93.3 21.8	-03.1 71.6	42.5 36.0	42.5 35.9	42.6 35.8	42.0 35.1	42.7 35.4	Ss= 1.0 Ss = 1.	1.9 2.1	2.3 2.5	2.6 2.8	2.8 3.1	3.1 3.3	3.3 3.5	3.5 3.7	3.7 3.9	3.8 4.0	4.0 4.2	4.1 4.3	Ss= 1.0 Ss= 1.	1.6 1.8	* This inclusive within region wind s
Bldg. Heig	7 3407 T 3407	-20./ -38.2 10 E - 36 D	0.05- 2.01-	-18.5 -36.1	-18.6 -36.1	-18.6 -36.1	-20.8 -25.2	-20.9 -25.3	-20.9 -25.3	-20.9 -25.3	-21.0 -25.4	-21.0 -25.4	-29.4 -54.0	-26.4 -50.9	-26.4 -51.0	-26.4 -51.0	-26.5 -51.0	-26.5 -51.1	-29.6 -35.7	-29.6 -35.8	-29.7 -35.9	-29.8 -35.9	-29.8 -35.9	-35.1 -64.1	-31.4 -60.5	-31.5 -60.5	-31.5 -60.6	-31.5 -60.6	-35.2 -42.5	-35.3 -42.5	-35.3 -42.6	-35.4 -42.6	-35.4 -42.7	5s = 0.4 Ss = 0.5	1.2 1.3	1.5 1.7	1.8 2.0	2.1 2.3	2.3 2.5	2.6 2.7	2.8 2.9	3.0 3.1	3.2 3.4	3.4 3.5	3.5 3.6	Ss = 0.4 Ss = 0.5	0.9 1.0	snow loa indep verife speci lo
ft. Down	(Isrl)	14.0	14.7	14.6	14.5	14.4	23.1	22.9	22.8	22.7	22.6	22.5	13.8	17.1	17.0	17.0	16.9	16.8	27.3	27.2	26.9	26.8	26.7	13.8	19.9	19.9	19.8	19.7	32.4	32.2	32.1	32.0	31.8	55=0.3	1.0	13	1.6	1.9	22	2.4	2.6	2.8	3.1	32	33	Ss=0.3	0.7	
ght = 15 (psf)	5005	-00.1	0.00-	-55.8	-55.8	-55.9	-25.2	-25.3	-25.3	-25.3	-25.4	-25.4	-73.3	-68.0	-68.0	-68.0	-68.1	-68.1	-30.9	-30.9	-31.0	-31.0	-31.1	-89.1	-82.6	-82.7	-82.7	8.08-	-37.6	-37.7	-37.7	-37.9	-37.8	\$s = 0.2	0.8	1.1	1.4	1.7	1.9	2.2	2.4	2.6	1.2	3.0	3.1	Ss = 0.2	0.5	
Idg. Hei	20162	-38.4	0.05-	-36.1	-36.1	-36.1	-25.2	-25.3	-25.3	-25.3	-25.4	-25.4	-46.7	-44.0	-44.0	-44.1	-44.1	-44.1	-30.9	-30.9	-31.0	-31.0	-31.1	-56.8	-53.6	-53.6	-53.6	-53./	-37.6	-37.7	-37.7	-37.8	-37.8	Ss= 0.1	0.6	0.9	1.2	1.5	1.7	2.0	2.2	2.4	27	2.8	2.9	Ss= 0.1	0.2	
8 4	1 202	1.02-	101-	-18.5	-18.6	-18.6	-20.8	-20.9	-20.9	-20.9	-21.0	-21.0	-25.4	-22.7	-22.7	-22.8	-22.8	-22.8	-25.5	-25.6	-25.6	-25.7	-25.7	-31.0	-27.8	-27.8	-27.8	6.12-	-31.2	-31.2	-31.2	-31.3	-31.4	Ss = 0.0	0.3	0.6	0.9	1.2	11	1.7	1.9	21	2.5	2.6	2.7	5s = 0.0	0.0	
and which	100141009	2111	21.2	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	7:12	8:12	9:12	21:01	12:12	Roof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	21:6	11:12	12:12			
	Ľ	-	E	хро	sur	e C	Cate	goi	y B	3				Un	Ex	pos	sure	e Ca	iteg	gory sf)	C					Exp	pos	ure	Cate	go	ry D		Long Street		1		si	Do	wn	sl	ope	ef)		1		La	teral	1

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE

DOWN	(psf)	14.7	21.9	21.9	21.8	21.1	0.12	35.8	35.7	35.6	35.5	35.3	18.3	27.9	27.8	27.7	27.6	46.7	46.6	46.5	46.3	46.2	1.04	20.0	1.10	31.6	31.5	31.4	53.6	53.5	53.4	53.2	23.0	1=3.1	4.8	5.2	5.5	2.8	0.9	9.7	6.3	6.5	6.6	6.6	6.7	5=3.1	4.5	
sf) DO II	Zone 3	-100.2	-93.0	-93.0	-93.0	-93.1	47.4	42.4	42.5	42.5	-42.6	42.6	-133.7	-124.0	-124.1	-124.1	-124.1	-124.2	-56.8	-56.8	-56.8	-56.9	5.0C-	-155.2	0.441-	-144.0	-144.1	-144.1	-65.9	-66.0	-66.0	-66.1	-66.1	Ss= 2.5 Ss	4.0	4.3	4.6	4.9	2.1	5.3	5.5	5.7	5.8	5.9	5.9	Ss= 2,5 Ss	3.6	۵
ressures (p:	Zone 2	-64.0	-60.4	-60.4	-60.4	-00.4	40.00	42.4	42.5	42.5	-42.6	-42.6	-85.5	-80.7	-80.7	-80.7	-80.7	-56.7	-56.8	-56.8	-56.8	-56.9	5.00-	5.66-	1.02-	-93.8	-93.8	-93.8	-65.9	-66.0	-66.0	-66.1	-00.1	Ss = 2.0	3.2	3.6	3.9	4.2	4.4	4.6	4.8	5.0	5.1	5.2	5.3	Ss = 2.0	2.9	Ē
Up	Zone 1	-35.0	-31.4	-31.4	-31.4	-31.4	-35.1	-35.2	-35.2	-35.3	-35.3	-35.3	-46.9	-42.1	-42.1	-42.2	-42.2	-47.1	-47.1	-47.2	-47.2	-47.2	11	-54.6	0.64-	-49.1	-49.1	-49.1	-54.8	-54.8	-54.8	-54.9	-55.0	5s=1.5	2.5	2.8	3.2	3.4	3.7	3.9	4.1	4.4	45	4.6	4.6	Ss=1.5	2.2	
Down	(psf)	13.8	18.7	18.7	18.6	C.01	30.7	30.1	29.9	29.8	29.7	29.6	16.4	24.7	24.6	24.5	24.4	24.3	40.8	40.7	40.6	40.5	40.3	18./	2 20.2	28.4	28.3	28.2	47.8	47.7	47.6	47.5	47.2	Ss = 1.25	2.1	2.5	2.8	3.1	8. r	3.5	3.7	3.9	4.1	4.2	4.3	Ss = 1.25	1.8	* -
st)	Zone3	-82.3	-76.4	-76.4	-76.4	-/0.4	C.01-	-34.8	-34.8	-34.8	-34.9	-34.9	-115.8	-107.4	-107.4	-107.5	-107.5	-49.0	49.1	-49.1	-49.2	49.2	7.64	-13/.2	4.121-	-127.4	-127.4	-127.5	-58.3	-58.3	-58.3	-58.4	-58.5	Ss= 1.0	1.9	2.3	2.6	2.8		5.5	3.5	1.0 8.6	3.9	4,0	4.1	Ss= 1.0	1.6	wit re W
Pressures [Zone 2	-52.5	-49.5	49.5	-49.5	49.0	-34.7	-34.8	-34.8	-34.8	-34.9	-34.9	-74.0	-69.8	-69.8	-69.8	-69.9	-49.0	-49.1	-49.1	-49.2	49.2	7.64	8./8-	0.20-	-82.9	-82.9	-83.0	-58.3	-58.3	-58.3	-58.4	-58.5	Ss = 0.5	13	1.7	2.0	2.3	2.5	2.7	2.9	33	3.4	3.5	3.6	Ss = 0,5	1.0	snov ii v
0D	Zone 1	-28.6	-25.6	-25.6	-25.7	1.62-	1.62-	-28.8	-28.8	-28.9	-28.9	-28.9	40.5	-36.4	-36.4	-36.4	-36.4	-30.5	40.7	-40.8	-40.8	40.8	5.04	43.2	12.2	43.3	43.3	-43.4	-48.4	-48.4	48.4	48.5	48.6	5s = 0.4	1.2	1.5	1.8	2.1	2.3	2.6	2.8	3.1	3.3	3.4	3.5	Ss = 0,4	0.9	2
Down	(psf)	13.8	18.7	18.7	18.6	10.4	30.7	30.1	29.9	29.8	29.7	29.6	14.7	21.9	21.9	21.8	21.7	36.0	35.8	35.7	35.6	35.5	5.00	1/.0	0.02	25.6	25.5	25.4	42.9	42.7	42.6	42.5	42.3	5s = 0.3	1.0	1.3	1.6	1.9	2.2	2.4	2.6	2.9	3.1	3.2	3.3	Ss = 0.3	0.7	
sef)	Zone 3	-82.3	-76.4	-76.4	-76.4	-/0.4	C.01-	-34.8	-34.8	-34,8	-34.9	-34.9	-100.2	-93.0	-93.0	-93.0	-93.1	-42.4	42.4	-42.5	42.5	42.6	0.24-	1121-	1120	-113.0	-113.0	-113.1	-51.6	-51.6	-51.7	-51.7	-51.8	Ss = 0.2	0.8	1.1	1.4	1.7	1.9	2.2	2.4	2.6	2.9	3.0	3.1	Ss = 0.2	0.5	
Pressures (r	Zone 2	-52.5	-49.5	-49.5	-49.5	49.0	-34.7	-34.8	-34.8	-34.8	-34.9	-34.9	-64.0	-60.4	-60,4	-60.4	-60.4	-42.4	-42.4	-42.5	-42.5	-42.6	0.24-	8.11-	4.61-	-73.5	-73.5	-73.5	-51.6	-51.6	-51.7	-51.7	-51.8	Ss= 0.1	0.6	6.0	1.2	15	1.7	2.0	2.2	2.5	2.7	2.8	2.9	Ss= 0.1	0.2	
an	Zone 1	-28.6	-25.6	-25.6	-25.7	1.62-	1.62-	-28.8	-28.8	-28.9	-28.9	-28.9	-35.0	-31.4	-31.4	-31.4	-31.4	-35.1	-35.2	-35.2	-35.3	-35.3	5.05-	47.0	28.2	-38.3	-38.4	-38.4	42.8	42.9	42.9	42.9	43.0	Ss = 0.0	0.3	0.6	0.9	1.2	51	17	1.9	2.1	2.5	2.6	2.7	Ss = 0.0	0.0	
	Roof Pitch	1:12	2:12	3:12	4:12	21:5	21.0	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	5:12	8:12	9:12	10:12	11:12	12:12	21:1	21.2	4:12	5:12	6:12	7:12	8:12	9:12	10:12	12:12	Roof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	10:12	11:12	12:12			
-				Exp	posi	ure	Cat	ego	ory	B	-				Ex	pos	ure	Cat	ego	ory	C.	-	Ľ		E	xpc	sur	e C	ate	gor	y D				-			Do	wn	SI	ope	2						
													I	Up	an	d E	ον	vn	ps	f)																	Si	de	Lo	ad	(p	sf)				Lat	teral	1

APPENDIX B 43 PRESCRIPTIVE PRESSURE TABLES PAGE ----

7-05

ph Speed

v Load

is not all areas state or e local ds and hould be antly or the nstall

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE _ _ _ _ _ _ _ _

ds and hould be dantly or the

(ht = 30 ft. Down 2003	3 61 3 66	-30.2 13.4	-30.2 13.3	-30.2 13.2	-30.2 13.2	-30.3 13.0	-13.4 14.2	T'4T 4'CT-	13.5 14.0	-13.5 13.8	-13.6 13.6	0'CT 0'CT-	-46.1 13.6	-42.7 13.4	42./ 13.3	42.8 13.2	42.8 13.0	-19.2 18.6	-19.2 18.4	-19.3 18.3	-19.3 18.2	1.8.1 1.9.1	-13.4 1/.3	FO 0 12.4	-50.8 13.7	-50.9 13.7	-50.9 13.6	-50.9 13.5	-23.0 21.2	-23.0 21.1	-23.0 21.0	-23.1 20.9	-23.1 20.7	Ss = 1.0 Ss = 1.25	1.9 2.1	2.7 2.9	3.1 3.2	3.4 3.5	3.6 3.8	3.8 4.0	1.4 0.4	4.1 4.2 4.3	4.2 4.4	4.3 4.4	Ss = 1.0 Ss = 1.25	1.6 1.8	G * T inclu with reg With
Bldg. Heig	10.00	-9.6 -19.3	-9.6 -19.3	-9.7 -19.3	-9.7 -19.4	-9.7 -19.4	-11.0 -13.4	+'CT- 0'TT-	11.1 12.5	-111 -13.5	1112 -13.6	0.61- 2.11-	-15.6 -29.2	-14.0 -27.5	C.12- 0.41-	-14.0 -27.6	-14.1 -27.6	-15.8 -19.2	-15.9 -19.2	-15.9 -19.3	-15.9 -19.3	-16.0 -19.4	10.7 24.0	-16.0 -34.8	-16.8 -32.8	-16.8 -32.8	-16.8 -32.9	-16.9 -32.9	-19.0 -23.0	-19.0 -23.0	-19.0 -23.0	-19.1 -23.1	-19.1 -23.1	Ss = 0.4 Ss = 0.5	1.2 1.3	2.1 2.2	2.5 2.6	2.8 2.9	3.1 3.2	3.3 3.4	3.4 3.5	3.7 3.8	3.7 3.8	3.8 3.9	Ss = 0.4 Ss = 0.5	0.9 1.0	snow in ve s
t = 15 ft.	306 136	-30.2 13.4	-30.2 13.3	-30.2 13.2	-30.2 13.2	-30.3 13.0	-13.4 14.2	1.4L 14.L	13.5 14.0	-13.5 13.8	-13.6 13.6	0.61 0.61-	-39.8 13.6	-36.9 13.4	-36.9 13.3	-37.0 13.2	-37.0 13.0	-16.5 16.5	-16.5 16.4	-16.6 16.3	-16.6 16.2	-16./ 16.0	4.CL 1.01-	AED 13.4	45.0 13.3	45.0 13.2	45.1 13.2	45.1 13.0	-203 19.2	-20.3 19.1	-20.4 19.0	-20.4 18.8	-20.4 18.7	5s = 0.2 Ss = 0.3	0.9 1.0	1.8 2.0	2.2 2.4	2.5 2.7	2.8 2.9	3.0 3.1	3.1 3.3	3.4 3.5 3.4 3.5	3.5 3.6	3.5 3.7	5s = 0.2 Ss = 0.3	0.5 0.7	
Up Pressures (pst	300 300	-9.6 -19.3	-9.6 -19.3	-9.7 -19.3	-9.7 -19.4	-9.7 -19.4	11.0 -13.4	+'CT- 0'TT	C.21- 1.11	11.1 -13.5	0.21- 1.11	0.61- 2.11	13.4 -25.1	11.9 -23.7	7.52- 0.21	12.0 -23.8	12.1 -23.8	13.6 -16.5	13.6 -16.5	13.6 -16.6	13.7 -16.6	13./ -16./	13.8 -10./	105- 201	14.8 -29.0	14.8 -29.0	14.8 -29.0	14.9 -29.1	16.7 -20.3	16.8 -20.3	16.8 -20.4	16.8 -20.4	16.9 -20.4	s = 0.0 Ss = 0.1 S	0.6 0.7	1.6 1.6	2.0 2.0	2.4 2.4	2.7 2.7	2.9 2.9	3.0 3.0	3.2 3.3 3.3	3.3 3.3	3.4 3.4	s = 0,0 Ss = 0,1 S	0.0 0.2	
poor fortech	61.1	2:12	3:12	4:12	5:12	6:12	21:/	21:0	71.6	21:01	21:11	71.71	1:12	2:12 -	3:12	- 21.4	6:12 -	7:12 -	8:12	9:12 -	10:12	- 71:11	11.11	2112	3.12	4:12 -	5:12 -	6:12	8:12	9:12	10:12	11:12 -	12:12	Roof Pitch Ss	1:12	3:12	4:12	5:12	6:12	21:/	8:12	10:12	11:12	12:12	8		I
	Ĺ		E	кро	sure	Ca	teg	ory	y B			I	U	lp a	Exp	osu I De	ow	Cate	egoi psf	ry C	2		1		E	(po	sur	e Ca	teg	ory	D					S	D	owr	ad	ope (p	sf)				La	teral	r

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE _____

					S					V		S F M	UN RA	I M R	IE Of	RA	IL																	PR	RES	SC	RI	P 1		A /E	P P	P		SU	IR	D	F A	X B	B 46 LES PAGE
Down	(psf)	24.1	22.9	21.6	20.2	18.9	1.11	18.7	173	16.6	16.0	15.9	24.1	23.0	21.7	20.3	19.0	17,8	22.5	21.4	20.6	5.02	20.3	22.8	23.0	21.8	20.6	19.4	18.2	24.0	23.6	23.4	23.5	23.1	55 = 3,1	4,8	6.0	7.0	7.8	5.0 7 0	8.7	8.8	8.7	8.6	8.4	8.2	Ss = 3.1	4.5	Mid US (Mediu Snow)*
sf)	Zone 3	-39.8	-36.9	-36.9	-36.9	-37.0	-37.0	191	16.6	19.01-	16.7	-16.7	-53.4	-49.5	-49.5	-49.5	49.5	-49.6	-22.3	-22.3	4·77-	4.22- 4.22-	-225	1 09	-575	-57.6	-57.6	-57.6	-57.7	-26.0	-26.1	-26.1	7.02-	-26.2	Ss= 2.5	4.1	5.4	6,4	11	9.1	2 18	81	81	8.0	7.8	7.6	Ss= 2.5	3.6	ASCE 7-10
Pressures (p	Zone Z	-25.1	-23.7	-23.7	-23.7	-23.8	-23.8	191	16.6	16.6	16.7	-16.7	-33.8	-31.9	-31.9	-32.0	-32.0	-32.0	-22.3	-22.3	4.22-	1.22-	200-	7 08-	-37.2	-37.2	-37.2	-37.3	-37.3	-26.0	-26.1	-26.1	7.02-	-26.2	Ss = 2.0	3.6	4.8	5.8	9.9	1.1	76	7.6	7.6	7.5	7.3	7.1	Ss = 2.0	2.9	115 mph
Up	Zone 1	-13.4	-11.9	-12.0	-12.0	-12.0	1.21-	13.6	13.6	10.01	1.01-	-13.8	-18.2	-16.3	-16.3	-16.3	-16.4	-16.4	-18.4	-18.4	-18.5	981-	-186	-213	-191	-19.1	-19.1	-19.2	-19.2	-21.5	-21.6	-21.6	-21.0	-21.7	Ss = 1.5	3.0	4.3	5.3	0.9	2.9	2.0	11	172	7.0	6.8	6.7	55 = 1.5	2.2	Basic Wind Speed
Down	(psf)	24.1	22.9	21.6	20.2	18.9	11.1	16.4	15.5	LVL	14.0	13.6	24.1	22.9	21.6	20.2	18.9	17.7	20.7	19.7	10.7	181	17.9	27.8	22.0	20.8	19.6	18.4	17.3	22.2	21.3	21.1	0.12	20.7	Ss = 1.25	2.8	4.0	5.0	5.7	0.2	0.0	89	6.8	6.7	6.6	6.4	Ss = 1.25	1.8	Ground Snow Load * This table is no
sf)	Zone 3	-32.6	-30.2	-30.2	-30.2	-30.2	-30.3	VEL-	135	19 1	921-	-13.6	46.1	-42.7	-42.7	-42.8	-42.8	42.8	-19.2	-19.2	5.61-	C.21-	19.4	875-	-50.8	-50.8	-50.9	-50.9	-50.9	-22.9	-23.0	-23.0	-23.0	-23.1	Ss = 1.0	2.6	3.8	4.8	5.6	1.0	6.6	6.7	6.6	6.6	6.4	6.3	Ss= 1.0	1.6	within the state of region. The loca wind speeds and
Pressures (p	Zone Z	-20.5	-19.3	-19.3	-19.3	-19.4	13.4	13.4	13.5	10 1	13.6	-13.6	-29.2	-27.5	-27.5	-27.5	-27.6	-27.6	-19.2	-19.2	-19.3	19.4	-19.4	34.8	-37.8	-32.8	-32.8	-32.9	-32.9	-22.9	-23.0	-23.0	-23.0	-23.1	Ss = 0.5	2.2	3.4	4.5	5.4	0.0	6.6	9.9	6.6	6.5	6.3	6.1	Ss = 0.5	1.0	snow loads should independantly verifed for the
Upt	Zone 1	-10.8	-9.6	-9.6	-9.7	-6.7	1.6-	011-	111	1.11	111	-11.2	-15.6	-14.0	-14.0	-14.0	-14.0	-14.1	-15.8	-15.9	-15.9	0.01-	-16.0	-187	-16.8	-16.8	-16.8	-16.8	-16.9	-18.9	-19.0	-19.0	101	191-	Ss = 0,4	2.1	3.3	4.5	5.4	6.0	9.4	9.9	6.6	6.5	6.3	6.1	Ss = 0.4	0.9	specific install location.
Down	(psf)	24.1	22.9	21.6	20.2	18.9	11.1	16.4	15.5	L VI	14.0	13.6	24.1	22.9	21.6	20.2	18.9	17.7	19.2	18.2	1/.3	C.01	15.9	37.8	21.7	20.5	19.3	18.1	17.0	20.7	19.8	19.1	10.0	18.7	Ss = 0.3	1.9	3.3	4.5	5.4	0.9	66	9.9	6.6	6.5	6.3	6.1	Ss = 0.3	0.7	
sf)	Zone3	-32.6	-30.2	-30.2	-30.2	-30.2	5.05-	124	125	201	126	-13.6	-39.8	-36.9	-36.9	-36.9	-37.0	-37.0	-16.5	-16.5	-10.0	-16.7	-16.7	48.5	45.0	45.0	-45.0	-45.1	-45.1	-20.2	-20.3	-20.3	4.02-	-20.4	Ss = 0.2	1.8	3.3	4.5	5.4	0.0	6.6	9.9	6.6	6.5	6.3	6.1	Ss = 0.2	0.5	
Pressures (p	Zone Z	-20.5	-19.3	-19.3	-19.3	-19.4	4.61-	124	135	101	13.6	-13.6	-25.1	-23.7	-23.7	-23.7	-23.8	-23.8	-16.5	-16.5	-10.0	0.01-	-167	-30.7	0.66-	-29.0	-29.0	-29.0	-29.1	-20.2	-20.3	-20.3	20.4	-20.4	Ss = 0.1	1.8	3.3	4.5	5.4	0.0	66	9.9	6.6	6.5	6.3	6.1	Ss= 0.1	0.2	
Upf	Zone 1	-10.8	-9.6	-9.6	-9.7	-9.7	1.6-	0.11	1111	1.1.1	1.11-	-11.2	-13.4	-11.9	-12.0	-12.0	-12.0	-12.1	-13.6	-13.6	-13.0	-13.7	-13.8	165	-14.7	-14.8	-14.8	-14.8	-14.9	-16.7	-16.7	-16.8	-16.0	-16.9	Ss = 0.0	1.8	3.3	4.5	5.4	0.0	6.6	6.6	6.6	6.5	6.3	6.1	Ss = 0.0	0.0	
	Roof Pitch	1:12	2:12	3:12	4:12	5:12	21:0	21.1	0.12	CL-UL	21.11	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	21.9	21:01	C1-C1	1.12	0.12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	21:01	12:12	Roof Pltch	1:12	2:12	3:12	4:12	5:12	21:0	8:12	9:12	10:12	11:12	12:12			
_	-			Ex	pos	ure	Ca	teg	ory	B					E	pos	sure	e Ca	ate	gor	yc		-			Ex	pos	sure	e Ca	ate	gor	y D	-		-			_	Do	wn	Slo	pe			-				
												-	-	Up	ar	nd I	ο	wn	(p	sf)																		Si	de	Loa	ad	(ps	f)				Lat	eral	

APPENDIX B PRESCRIPTIVE PRESSURE TABLES

S ft. S ft. 3 pown 2 45.5 2 41.9 2 33.6 3 2 2 37.8 3 25.9 3 25.9 3 27.5 3 27.5 3 27.5 3 27.5 3 38.0 3 33.6 3 33.6 3 33.6 3 33.6 3 34.4 3 33.6 3 34.4	S ft. B I B I 3 $00wn$ $-0p$ 3 $00ff$ $2one1$ 2 41.9 $2one1$ 2 41.9 -9.6 2 41.9 -9.6 2 33.6 -9.7 2 33.6 -9.7 3 27.5 -9.7 3 27.5 -9.7 3 27.5 -9.7 4 23.5 -11.1 5 27.5 -14.0 6 18.2 -11.1 6 18.7 -11.1 6 18.7 -11.0 7 27.6 -15.8 8 25.5 -14.0 9 33.6 -14.0 9 33.6 -14.0 9 33.6 -14.0 9 33.6 -14.0 9 33.6 -14.0 9 33.6	6 IA. BIGR. Heig Down Up Pressures (1 2 33.5 9.0 U_0 200.5 2 41.9 9.6 -19.3 20.5 2 33.5 9.0 -10.8 20.5 2 33.5 9.7 -19.3 20.5 2 33.5 -9.6 -19.3 20.5 2 33.5 -9.7 -19.4 20.5 3 20.7 -10.4 -13.4 20.5 4 23.5 -11.0 -13.4 2.7.5 5 18.2 -11.1 -13.6 -19.2 6 18.2 -11.1 -13.6 -19.2 7 20.0 -16.0 -19.4 2.7.5 8 27.5 -11.1 -13.6 -19.3 9 33.6 -14.0 -27.5 -19.4 9 33.6 -14.0 -27.5 -19.4 7 20.0 <td< th=""><th>S ft. BIdg. Height = 301 S hown Up Pressures (psf) 2 33.5 -9.6 -19.3 -30.2 2 41.9 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.7 -19.4 -30.3 3 20.7 -19.4 -30.3 -13.4 4 23.5 -11.1 -13.6 -13.6 9 41.4 -18.7 -19.4 -19.4 9 37.8 -14.0 -27.5 42.7 9 37.3 -13.6 -13.6 -13.6 9 37.3 -14.1 -27.6 42.8 9 37.5 -14.1 -27.5</th><th>5 H. BIdig. Height = 30 ft. 5 mon Uppressure (psf) Down 9 (psf) 20ne1 Zone2 Zone3 (psf) 2 45.5 -9.6 -19.3 30.2 41.9 2 33.6 -9.7 -19.3 30.2 31.6 2 33.6 -9.7 -19.3 30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 3 33.6 -9.10 -13.4 -13.4 25.9 4 1.9 21.5 -11.1 -13.5 -13.5 33.7 9 41.9 -14.0 -77.5 -42.7 37.8 9 41.9 -14.0 -77.5 -42.3 33.3 9 33.5 -14.0 -77.5 42.7 31.4 9 41.9 -14.0 -77.5 42.7 31.4 9 41.9 -14.0 -77.5 42.1 <</th><th>Str BIdg. Height = 30 (t Down Up Presure (sd) Down Down Up Presure (sd) Down <thdown< th=""> Down Down D</thdown<></th><th>F.t. BIIGR, Height = 3 (f</th></td<>	S ft. BIdg. Height = 301 S hown Up Pressures (psf) 2 33.5 -9.6 -19.3 -30.2 2 41.9 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.6 -19.3 -30.2 2 33.5 -9.7 -19.4 -30.3 3 20.7 -19.4 -30.3 -13.4 4 23.5 -11.1 -13.6 -13.6 9 41.4 -18.7 -19.4 -19.4 9 37.8 -14.0 -27.5 42.7 9 37.3 -13.6 -13.6 -13.6 9 37.3 -14.1 -27.6 42.8 9 37.5 -14.1 -27.5	5 H. BIdig. Height = 30 ft. 5 mon Uppressure (psf) Down 9 (psf) 20ne1 Zone2 Zone3 (psf) 2 45.5 -9.6 -19.3 30.2 41.9 2 33.6 -9.7 -19.3 30.2 31.6 2 33.6 -9.7 -19.3 30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 2 33.6 -9.7 -19.4 -30.2 33.6 3 33.6 -9.10 -13.4 -13.4 25.9 4 1.9 21.5 -11.1 -13.5 -13.5 33.7 9 41.9 -14.0 -77.5 -42.7 37.8 9 41.9 -14.0 -77.5 -42.3 33.3 9 33.5 -14.0 -77.5 42.7 31.4 9 41.9 -14.0 -77.5 42.7 31.4 9 41.9 -14.0 -77.5 42.1 <	Str BIdg. Height = 30 (t Down Up Presure (sd) Down Down Up Presure (sd) Down Down <thdown< th=""> Down Down D</thdown<>	F.t. BIIGR, Height = 3 (f
	Bill Bill 200e1 200e1 200e2 -9.6 -9.7 -9.7 -9.7 -9.7 -9.7 -11.0 -11.0 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.2 -14.0 -14	BIdg. Heig Jp Pressures Jop Pressures Jon 2 Jone 2 <thjon 2<="" th=""></thjon>	BIdg. Height = 301 Up Pressures (pf) Zone1 Zone2 Zone3 Zone1 Zone2 Zone3 -9.0 -19.3 -30.2 -9.1 -19.3 -30.2 -9.1 -19.3 -30.2 -9.1 -19.3 -30.2 -9.7 -19.3 -30.2 -9.7 -19.3 -30.2 -9.7 -19.3 -30.2 -9.7 -19.4 -30.3 -9.7 -19.4 -30.3 -9.7 -19.4 -30.3 -9.1 -13.4 -13.4 -11.1 -13.5 -19.3 -11.1 -13.5 -19.3 -14.0 -27.5 -42.8 -14.1 -17.6 -42.8 -14.1 -17.6 -19.4 -14.1 -27.5 -42.8 -14.1 -27.5 -42.8 -14.0 -27.5 -42.8 -15.9 -23.10 -23.0	Image: Interact and the set of		Indig Height = 30 Intersures [ard] Inttersures [ard] Inttersures [ard]
Jell 4 Down Up Pressures (psf) Down Up Pressures (psf) Zone 2 30.2 31.6 11.9 23.7 19.3 30.2 31.6 11.9 23.7 19.3 30.2 31.6 11.9 23.7 19.3 30.2 31.6 11.9 23.7 19.3 30.2 31.6 11.9 23.7 19.4 30.3 31.6 11.9 23.7 19.4 30.3 31.6 11.6 23.7 19.4 30.3 31.6 11.6 23.7 19.4 31.5 11.6 11.6 23.7 19.4 13.6 16.6 11.8 24.4 19.4 21.5 11.6 23.7 16.6 19.4 13.7 16.6 11.6 23.7 19.4 13.6 16.9 13.6 16.6 19.1 27.5	hf = 30 ft. mom bl def. Heig 2sfi 0st Up Pressure 2sfi 0st 2one 1 zone 2 33.5 41.9 11.9 zone 1 zone 2 30.2 41.9 11.9 zone 1 zone 2 30.2 41.9 11.9 20.1 23.5 30.2 33.6 11.2.0 23.8 -30.2 33.5 -12.0 23.3 -30.3 27.5 -13.6 2.5.3 -30.3 27.5 -13.6 2.5.3 -30.3 27.5 -13.6 2.5.3 -13.6 18.2 -13.6 2.5.3 -13.5 18.2 -13.6 2.5.3 -13.6 18.2 -13.5 2.5.4 -13.5 18.2 -13.6 2.5.2 -13.5 18.2 -13.6 2.5.2 -13.5 18.4 2.5.2 -15.6 -13.5 18.4 2.5.2 -15.6 -13.5 <td>$L_{\rm Devention}$ <math>-Mildie. Heiginesi (lish) <math>Lohera 2 $Vartionic (lish)$ $2one 1$ $2one 2$ 44.5 13.4 $2one 2$ 44.9 21.4 23.7 37.8 -12.0 23.7 37.8 -12.0 -23.7 37.8 -12.0 -23.7 37.8 -12.0 -23.7 37.6 -12.0 -23.7 37.6 -12.0 -23.7 37.6 -12.0 -23.7 27.5 -12.1 -23.7 37.8 -12.0 -23.7 27.5 -13.7 -16.6 19.7 -13.7 -16.7 37.8 -16.4 -32.0 37.4 -191.1 -37.2 37.8 -16.4 -22.7 37.8 -16.6 -22.7 37.4 -191.1 -37.2 37.4 -191.1 -37.2 37.4 <td< math=""></td<></math></math></td> <td>BIdG. Heig Iup Pressures (Zone 1 Zone 2 23.7 25.1 -13.4 25.1 -11.9 Zone 2 -13.4 25.3.7 -11.20 -23.3.7 -12.10 -23.3.7 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -13.6 -16.5 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.1 -37.2 -13.1 -37.2 -13.2 -16.6 -18.6 -22.5 -19.1 -37.2 -19.2 -23.1 -19.2 -23.1 -19.2 -22.1 -19.1</td> <td>dg. Heig Pressures (2606.2.1.2.2.1.2.2.1.2.2.2.2.2.2.2.2.2.2.2.</td> <td></td> <td></td>	$L_{\rm Devention}$ $-Mildie. Heiginesi (lish) Lohera 2 Vartionic (lish) 2one 1 2one 2 44.5 13.4 2one 2 44.9 21.4 23.7 37.8 -12.0 23.7 37.8 -12.0 -23.7 37.8 -12.0 -23.7 37.8 -12.0 -23.7 37.6 -12.0 -23.7 37.6 -12.0 -23.7 37.6 -12.0 -23.7 27.5 -12.1 -23.7 37.8 -12.0 -23.7 27.5 -13.7 -16.6 19.7 -13.7 -16.7 37.8 -16.4 -32.0 37.4 -191.1 -37.2 37.8 -16.4 -22.7 37.8 -16.6 -22.7 37.4 -191.1 -37.2 37.4 -191.1 -37.2 37.4 $	BIdG. Heig Iup Pressures (Zone 1 Zone 2 23.7 25.1 -13.4 25.1 -11.9 Zone 2 -13.4 25.3.7 -11.20 -23.3.7 -12.10 -23.3.7 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -12.10 -23.3.8 -13.6 -16.5 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.8 -16.7 -13.1 -37.2 -13.1 -37.2 -13.2 -16.6 -18.6 -22.5 -19.1 -37.2 -19.2 -23.1 -19.2 -23.1 -19.2 -22.1 -19.1	dg. Heig Pressures (2606.2.1.2.2.1.2.2.1.2.2.2.2.2.2.2.2.2.2.2.		

	Roof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	21.0	8:12	9:12	10:12	11:12	12:12	Roof Pitch	1:12	2:12	3:12	4:12	2119	C1.7	8:12	9:12	10:12	11:12	12:12			
an	Zone 1	-11.9	-10.6	-10.6	-10.6	-10.7	-10.7	-12.1	-12.1	-12.1	-12.2	-12.2	-12.3	-14.7	-13.1	-13.1	-13.2	-13.2	-13.2	-14.9	-14.9	-15.0	-15.0	-15.0	-15.1	-18.1	-16.2	-16.2	-16.2	-16.2	-18.3	-18.3	-18.3	-18.4	-18.4	-18.5	Ss = 0.0	1.8	3.3	4.5	4.0	6.4	99	6.6	6.6	6.5	6.3	6.1	5s = 0.0	0.0	
Pressures (Zone 2	-22.4	-21.1	-21.1	-21.2	-21.2	-21.2	-14.7	-14.7	-14.8	-14,8	-14.8	-14.9	-27.5	-25.9	-25.9	-25.9	-26.0	-26.0	-18.1	-18,1	-18.1	-18.2	-18.2	-18.3	-33.6	-31.7	-31.7	-31.7	-31.7	0.10-	-22.2	-22.2	-22.3	-22.3	-22.3	Ss= 0.1	1.8	33	4.5	4.0	6.4	99	6.6	6.6	6.5	6.3	6.1	Ss= 0.1	0.2	
(Jsd	Zone 3	-35.6	-33.0	-33.0	-33.0	-33.0	-33.1	-14.7	-14.7	-14.8	-14,8	-14.8	-14.9	43.5	-40.3	-40.3	-40.3	-40.4	-40.4	-18.1	-18.1	-18.1	-18.2	-18.2	-18.3	-52.9	-49.1	-49.1	49.1	49.2	1.00-	-22.2	-22.2	-22.3	-22.3	-22.3	Ss = 0.2	1.8	3.3	4.5	4 0	6.4	99	6.6	6.6	6.5	6.3	6.1	Ss = 0.2	0.5	
Down	(psf)	24.1	22.9	21.6	20.2	18.9	17.7	18.2	17.2	16.2	15.4	14.7	14.6	24.1	22.9	21.6	20.2	18.9	17.7	20.1	19.1	18.1	17.3	17.2	17.1	22.8	21.8	20.6	19.3	13.0	21.8	20.8	20.5	20.4	20.3	20.1	Ss = 0.3	1.9	3.3	4.5	4.0	6.4	99	9.9	6.6	6.5	6.3	6.1	Ss = 0.3	0.7	
9 9	Zone1	-11.9	-10.6	-10.6	-10.6	-10.7	-10.7	-12.1	-12.1	-12.1	-12.2	-12.2	-12.3	-17.1	-15.3	-15.3	-15.4	-15.4	-15.4	-17.3	-17.4	-17.4	-17.4	-17.5	-17.5	-20.5	-18.4	-18.4	-18.4	-18.4	200-	-20.7	-20.8	-20.8	-20.9	-20.9	5s = 0.4	2.1	3.3	4.5	4.0	6.4	9.9	6.6	6.6	6.5	6.3	6.1	Ss = 0.4	0.9	locatio
Pressures (Zone 2	-22.4	-21.1	-21.1	-21.2	-21.2	-21.2	-14.7	-14.7	-14.8	-14.8	-14.8	-14.9	-31.9	-30.1	-30.1	-30.1	-30.1	-30.2	-21.0	-21.0	-21.1	-21.1	-21.2	-21.2	-38.0	-35.8	-35.8	-35.9	-35.9	1.30-	-25.1	-25.1	-25.2	-25.2	-25.3	Ss = 0.5	2.2	3.4	4.5	4.5 4.0	6.4	99	6.6	9.9	6.5	6.3	6.1	5s = 0.5	1.0	snow loads sh independa verifed for
psf)	Zone 3	-35.6	-33.0	-33.0	-33.0	-33.0	-33.1	-14.7	-14.7	-14.8	-14,8	-14.8	-14.9	-50.3	-46.6	-46.7	-46.7	-46.7	-46.8	-21.0	-21.0	-21.1	-21.1	-21.2	-21.2	-59.8	-55.4	-55.5	-55.5	-55.5	1.50	-25.1	-25.1	-25.2	-25.2	-25.3	Ss= 1.0	2.6	3.8	4.8	0.0	6.4	99	6.7	9.9	6.6	6.4	6.3	Ss= 1.0	1.6	within the st region. The wind speed
Down	(psf)	24.1	22.9	21.6	20.2	18.9	17.7	18.2	17.2	16.2	15.4	14.7	14.6	24.1	22.9	21.6	20.2	18.9	17.7	21.7	20.7	19.8	19.5	19.4	19.3	22.8	22.7	21.5	20.3	19.1	73.4	22.8	22.7	22.6	22.5	22.3	Ss = 1.25	2.8	4.0	2.0	1.5	6.6	89	6.8	6.8	6.7	6.6	6.4	Ss = 1.25	1.8	Ground Snow * This table inclusive of a
9	Zone 1	-14.7	-13.1	-13.1	-13.2	-13.2	-13.2	-14.9	-14.9	-15.0	-15.0	-15.0	-15.1	-20.0	-17.9	-17.9	-17.9	-17.9	-18.0	-20.1	-20.2	-20.2	-20.3	-20.3	-20.3	-23,3	-20.9	-20.9	-20.9	-21.0	235	-23.6	-23.6	-23.6	-23.7	-23.7	55=1.5	3.0	4.3	5.3	0.0	69	20	11	1.7	7.0	6.8	6.7	Ss=1.5	2.2	Basic Wind S 25 ps
Pressures (Zone 2	-27.5	-25.9	-25.9	-25.9	-26.0	-26.0	-18.1	-18.1	-18.1	-18.2	-18.2	-18.3	-37.0	-34.8	-34.9	-34.9	-34.9	-35.0	-24.4	-24.4	-24.5	-24.5	-24.5	-24.6	-43.1	-40.6	-40.6	40.7	40.7	-28.4	-28.5	-28.5	-28.6	-28.6	-28.6	Ss = 2.0	3.6	4.8	5.8	0.0	7.4	2.6	7.6	7.6	7.5	7.3	7.1	Ss = 2.0	2.9	120 m
psf)	Zone 3	43.5	-40.3	40,3	-40.3	40.4	-40.4	-18.1	-18.1	-18.1	-18.2	-18.2	-18.3	-58.2	-54.0	-54.0	-54.0	-54.1	-54.1	-24.4	-24.4	-24.5	-24.5	-24.5	-24.6	-67.7	-62.8	-62.8	-62.8	-62.8	-28 4	-28.5	-28.5	-28.6	-28.6	-28.6	Ss= 2.5	4.1	5.4	6.4	11	67	2.0	8.1	8.1	8.0	7.8	7.6	Ss= 2,5	3.6	ASCE
Down	(psf)	24.1	22.9	21.6	20.2	18.9	17.7	20.1	19.1	18.1	17.3	17.2	17.1	24.1	23.7	22.3	21.0	19.7	18.4	23.7	22.6	22.2	22.1	22.0	21.8	22.8	23.7	22.5	21.3	20.1	15.55	25.4	25.2	25.1	25.0	24.9	Ss = 3.1	4.8	6.0	7.0	0.0	8.6	87	8.8	8.7	8.6	8.4	8.2	Ss = 3.1	4.5	(Medium Si

APPENDIX B PRESCRIPTIVE PRESSURE TABLES PAGE

	Roo	1	2	Ex	4 pos	ure	9 2 C	ate	gor	y B	IC	1	17	1	2	Exp	905	ure	Cat	tego	ory	C	11	12	F	2	Expo	osu	re C	ate	gory	/ D	11	11	Roo	H	2	m	4 I	wn	Slo	ope	2	5	1.5				
	f Pitch	12	:12	12	:12	:12	:12	12	:12	12	0:12	1:12	2:12	:12	:12	:12	12	71	12	12	12	0:12	1:12	2:12	12	12	12	12	12	:12	12	71.	21:0	2:12	f Pitch	:12	:12	12	:12	12	12	12	12	112	21.10	212	1		
a du	Zone 1	-14.2	-12.6	-12.7	-12.7	-12.7	-12.8	-14.3	-14.4	-14.4	-14.5	-14.5	-14.5	-17.5	-15.6	-15.6	-15.7	-15./	1.61-	-17.7	-17.7	-17.8	-17.8	-17.8	-21.4	-19.2	-19.2	-19.3	-19.3	-21.6	-21.7	1.12-	-21.8	-21.8	Ss = 0.0	0.9	1.7	2.4	2.9	m .	3.6	8.	3.9	4.0	11	41	Ss = 0.0	0.0	
Pressures (Zone 2	-26.5	-25.0	-25.0	-25.0	-25.1	-25.1	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-32.5	-30.6	-30.6	-30.7	1.05-	V 10-	-21.4	-21.5	-21.5	-21.6	-21.6	-39.6	-37.4	-37.4	-37.4	-37.5	-26.2	-26.2	7.02-	-26.3	-26.4	5s= 0.1	0.9	1.7	2.4	2.9	m .	3.6	3.8	6.6	4.0	11	41	5s= 0.1	0.2	
psf)	Zone 3	-42.0	-38.9	-38.9	-38.9	-39.0	-39.0	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-51.2	47.5	-47.5	47.5	41.0	0.14	-21.4	-21.5	-21.5	-21.6	-21.6	-62.4	-57.8	6/1 2 -	-57.9	-57.9	-26.2	-26.2	7.02-	26.3	-26.4	Ss = 0.2	1.1	1.8	2.4	2.9	m .	3.6	00 M	3.9	4.0	1.4	4.1	Ss =0.2	0.5	
Down	(pst)	16.2	15.8	15.2	14.6	14.0	13.4	17.2	17.1	17.0	16.9	16.7	16.6	16.2	15.8	15.2	14.6	12.4	4.CT	20.1	20.0	19.8	19.7	19.6	15.7	16.6	15.5	15.0	14.8	23.8	23.7	C.52	73.3	23.2	5s = 0.3	1.3	1.9	2.5	3.0	4.6	3.6	0. m	4.0	4.1	1.1	42	Ss = 0.3	0.7	
9 11	Zone 1	-14.2	-12.6	-12.7	-12.7	-12.7	-12.8	-14.3	-14.4	-14.4	-14.5	-14.5	-14.5	-20.3	-18.2	-18.2	-18.2	-16.5	500-	-20.6	-20.6	-20.6	-20.7	-20.7	-24.3	-21.8	817-	-21.9	-21.9	-24.5	-24.5	0.42-	-24.6	-24.7	55=0.4	1.4	2.1	2.7	3.1	S.5	3.8	4.0	4.1	4.2		6.4	Ss = 0.4	0.9	loc
Pressures	Zone 2	-26.5	-25.0	-25.0	-25.0	-25.1	-25.1	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-37.6	-35.5	-35.5	-35.5	-35.0	0.00-	-24.9	-24.9	-25.0	-25.0	-25.0	-44.8	-42.2	42.3	42.3	-42.4	-29.6	-29.6	1.62-	-29.8	-29.8	Ss = 0.5	1.5	2.2	2.8	3.2	9.0	3.9	4.1	4.2	4.3	T'T	4.4	55 = 0.5	1.0	snow load indep verife
pst)	Zone3	-42.0	-38.9	-38.9	-38.9	-39.0	-39.0	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-59.3	-55.0	-55.0	-55.0	-55.0	5 VC	-24.9	-24.9	-25.0	-25.0	-25.0	-70.4	-65.3	-653	-65.4	-65.4	-29.6	-29.6	1.62-	1.62-	-29.8	Ss= 1.0	2.0	2.6	3.2	3.7	0,4	4.3	4.5	4.6	4.7	0 V	4.8	Ss= 1.0	1.6	within t region. wind s
Down	(pst)	16.2	15.8	15.2	14.6	14.0	13.4	17.2	17.1	17.0	16.9	16.7	16.6	16.2	16.7	16.1	15.5	14.9	14.4L	22.7	22.5	22.4	22.3	22.2	15.7	17.7	16.6	16.3	16.2	26.4	26.2	1.02	25.9	25.8	Ss = 1.25	2.1	2.8	3.4	3.9	4.2	4.5	4.7	4.8	4.9	or	6.4	Ss = 1.25	1.8	Ground * This to inclusive
a y	Zone 1	-17.5	-15.6	-15.6	-15.7	-15.7	-15.7	-17.6	-17.7	-17.7	-17.8	-17.8	-17.8	-23.7	-21.2	-21.2	-21.2	5.12-	0 207	-23.9	-23.9	-23.9	-24.0	-24.0	-27.6	-24.7	-24.8	-24.8	-24.9	-27.8	-27.8	S17-	-28.0	-28.0	5s=1.5	2.5	3.1	3.7	4.1	4 5	4.7	4.9	5.1	5.1	2.5	5.2	55=1.5	2.2	Basic V
Pressures (Zone 2	-32.5	-30.6	-30.6	-30.7	-30.7	-30.7	-21.4	-21.4	-21.5	-21.5	-21.6	-21.6	-43.6	-41.1	-41.1	41.2	41.2	7.14	-28.9	-28.9	-28.9	-29.0	-29.0	-50.7	47.9	47.9	48.0	-48.0	-33.6	-33.6	1.55-	-33.7	-33.8	Ss = 2.0	3.2	3.6	4.2	4.7	2.0		5.5	5.6	5.6	1.0	5.6	Ss = 2.0	2.9	13
psf)	Zone 3	-51.2	47.5	-47.5	47.5	47.6	-47.6	-21.4	-21.4	-21.5	-21.5	-21.6	-21.6	-68.5	-63.6	-63.6	-63.6	-03.0	0 80	-28.9	-28.9	-28.9	-29.0	-29.0	-79.7	-73.9	-73.9	-74.0	-74.0	-33.6	-33.6	- 33./	-33.7	-33.8	Ss= 2.5	4.0	4.3	4.8	5.2	2.6	2.8	6.0	6.1	6.2	2.0	61	Ss= 2.5	3.6	ASCE
Down	(bst)	16.2	15.8	15.2	14.6	14.0	13.4	20.2	20.1	20.0	19.8	19.7	19.6	16.2	17.9	17.3	16.7	10.2	25.0	25.6	25.5	25.4	25.3	25.2	15.7	18.9	18.1	18.0	17.9	29.3	29.2	1.62	28.9	28.7	Ss = 3.1	4.8	5.2	5.5	5.9	6.2	6.5	9.9	6.7	6.0	0.0	6.7	Ss = 3.1	4.5	East Co Sn

	L			Ex	pos	ure	Ca	ate	gor	yВ		_				Ex	pos	ure	e Ca	iteg	ory	С			-		Exp	pos	ure	Cat	ego	ry D							Do	wn	Slo	ope				_	1		1
Doof Ditch	K001141001	1:12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	6:12	7:12	21:0	10:12	11:12	12:12	1:12	2:12	3:12	4:12	5:12	7:12	8:12	9:12	10:12	11:12	Roof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	7:12	21.0	10:12	11:12	12:12			
Up	T auor	-14.2	-12.6	-12.7	-12.7	-12.7	-12.8	-14.3	-14.4	-14.4	-14.5	-14.5	-14.5	-17.5	-15.6	-15.6	-15.7	-15.7	-15.7	-17.6	1.11-	-17.8	-17.8	-17.8	-21.4	-19.2	-19.2	-19.2	-19.3	-21.6	-21.7	-21.7	-21.7	-21.8	54 = 0.0	1.8	3.3	4.5	5.4	6.0	6.4	6.6	0.0	6.5	6.3	6.1	5s = 0.0	0.0	
Pressures (7 3007	-26.5	-25.0	-25.0	-25.0	-25.1	-25.1	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-32.5	-30.6	-30.6	-30.7	-30.7	-30.7	-21.4	5 LC-	-21.5	-21.6	-21.6	-39.6	-37.4	-37.4	-37.4	-37.4	-26.2	-26.2	-26.2	-26.3	-26.3	5s= 0.1	1.8	33	4.5	5.4	6.0	6.4	6.6	9.9	6.5	63	6.1	Ss= 0.1	0.2	
(111 - 1.2 (12007	20063	-42.0	-38.9	-38.9	-38,9	-39.0	-39.0	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-51.2	-47.5	-47.5	47.5	-47.6	-47.6	-21.4	+T7-	-21.5	-21.6	-21.6	-62.4	-57.8	-57.8	-57.9	-57.9	-26.2	-26.2	-26.2	-26.3	-26.3	50=0.7	1.8	3.3	4.5	5.4	0.9	6.4	0.6	0.0	0.0	6.3	6.1	Ss = 0.2	0.5	
Down	(Isd)	24.1	22.9	21.6	20.2	18.9	1.11	19.7	18.7	17.8	17.0	16.7	16.6	24.1	22.9	21.6	20.2	18.9	17.7	22.0	50.02	19.8	19.7	19.6	22.8	23.0	21.8	20.6	19.4	24.1	23.7	23.5	23.4	23.3	55=0.3	1.9	3.3	4.5	5.4	0.9	6.4	6.6 6.6	0.0	0.0	6.3	6.1	Ss = 0.3	0.7	
Up Up	70U61	-14.2	-12.6	-12.7	-12.7	-12.7	-12.8	-14.3	-14.4	-14.4	-14.5	-14.5	-14.5	-20.3	-18.2	-18.2	-18.2	-18.3	-18.3	-20.5	9.02-	-20.6	-20.7	-20.7	-24.3	-21.8	-21.8	-21.8	-21.9	-24.5	-24.5	-24.6	-24.6	-24.6	5c=0.4	2.1	3.3	4.5	5.4	0.9	6.4	9.9	0.0	6.5	6.3	6.1	$S_{5} = 0.4$	0.9	loca
Pressures (7 auor	-26.5	-25.0	-25.0	-25.0	-25.1	-25.1	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-37.6	-35.5	-35.5	-35.5	-35.6	-35.6	-24.8	6.42-	-25.0	-25.0	-25.0	-44.8	-42.2	42.3	42.3	42.3	-29.6	-29.6	-29.7	-29.7	-29.8	5e = 0.5	2.2	3.4	4.5	5.4	6.0	6.4	6.6	0.0	6.5	6.3	6.1	Ss = 0,5	1.0	snow load indepe verifed
osf) 70003	200e3	-42.0	-38.9	-38.9	-38.9	-39.0	-39.0	-17.4	-17.5	-17.5	-17.5	-17.6	-17.6	-59.3	-55.0	-55.0	-55.0	-55.0	-55.1	-24.8	C'67-	-25.0	-25.0	-25.0	-70.4	-65.3	-65.3	-65.3	-65.4	-29.6	-29.6	-29.7	-29.7	-29.8	Sc= 1.0	2.6	3.8	4.8	5.6	6.1	6.4	6.6	2.0	6.6	6.4	6.3	Ss = 1.0	1.6	within th region. wind sp
Down	(Ist)	24.1	22.9	21.6	20.2	18.9	17.1	19.7	18.7	17.8	17.0	16.7	16.6	24.1	23.8	22.5	21.1	19.8	18.6	23.9	2.22	22.4	22.3	22.2	22.8	24.1	22.9	21.7	20.5	26.4	26.2	26.1	26.0	25.9	Sc = 1.25	2.8	4.0	5.0	5.7	6.2	6.6	6.8	0.0	6.7	6.6	6.4	Ss = 1.25	1.8	Ground ! * This ta
Up 100.1	T au07	-17.5	-15.6	-15.6	-15.7	-15.7	-15.7	-17.6	-17.7	-17.7	-17.8	-17.8	-17.8	-23.7	-21.2	-21.2	-21.2	-21.3	-21.3	-23.8	C.52-	-23.9	-24.0	-24.0	-27.6	-24.7	-24.8	-24.8	-24.8	-27.8	-27.8	-27.9	-27.9	-28.0	Sc= 1.5	3.0	4.3	5.3	6.0	65	6.9	7.1	11	1.1	6.8	6.7	Ss=1.5	2.2	Basic W
Pressures (p	7 auo 7	-32.5	-30.6	-30.6	-30.7	-30.7	-30.7	-21.4	-21.4	-21.5	-21.5	-21.6	-21.6	-43.6	41.1	-41.1	41.2	-41.2	-41.2	-28.8	5.82-	-28.9	-29.0	-29.0	-50.7	47.9	47.9	47.9	48.0	-33.6	-33.6	-33.7	-33.7	-33.7	Sc = 2.0	3.6	4.8	5.8	6.6	7.1	7.4	7.6	2.6	7.5	7.3	7.1	Ss = 2.0	2.9	130
sf) 7000.3	20/0E 3	-51.2	47.5	47.5	-47.5	47.6	-47.6	-21.4	-21.4	-21.5	-21.5	-21.6	-21.6	-68.5	-63.6	-63.6	-63.6	-63.6	-63.7	-28.8	0 8C-	-28.9	-29.0	-29.0	7.9.7	-73.9	-73.9	-73.9	-74.0	-74.0	-33.6	-33.7	-33.7	-33.7	Sc= 2.5	4.1	5.4	6.4	7.1	7.6	5.6	8.1	0.1	0.8	7.8	7.6	Ss= 2,5	3.6	ASCE
Down	(Isr)	24.1	22.9	21.6	20.2	18.9	17.7	22.0	20.9	20.0	19.8	19.7	19.6	24.1	25.0	23.7	22.4	21.1	19.8	26.1	220	25.4	25.3	25.2	22.8	25.3	24.1	22.9	21.7	0.02	29.2	29.1	29.0	28.9	Sc=3.1	4.8	6.0	7.0	7.8	m 10	8.6	8.7	0.0	8.6	8.4	8.2	Ss = 3,1	4.5	New J

APPENDIX B 51 PRESCRIPTIVE PRESSURE TABLES PAGE

SFN SUN FRAME MICRORAIL

Up Pressures (pf) Down Up Pressures (1 20ne 2 20ne 3 (pst) 20ne 1 20ne 2	L -40.6 -04.2 I3.4 -27.1 -49.9 0 30 5 50 5 15 5 34 2 470	0./4- 2.42- 2.41 0.92- 2.42- 0. 7.74 2.42 4.31 2.92 3.92 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9	8 -38.6 -59.6 15.3 -74.4 -47.1	9 -38.6 -59.6 15.2 -24.4 -47.1	9 -38.6 -59.7 15.1 -24.4 -47.1	3 -27.0 -27.0 24.4 -27.3 -33.0	3 -27.0 -27.0 24.3 -27.3 -33.0	4 -27.0 -27.0 24.1 -27.4 -33.1	4 -27.1 -27.1 24.0 -27.4 -33.1	4 -27.1 -27.1 23.9 -27.5 -33.1	5 -27.2 -27.2 23.8 -27.5 -33.2	5 -57.7 -90.4 13.7 -36.5 -66.7	2 -54.4 -83.9 20.2 -32.7 -62.9	2 -54.4 -83.9 20.1 -32.7 -63.0	3 -54.5 -83.9 20.0 -32.8 -63.0	3 -54.5 -84.0 19.9 -32.8 -63.0	3 -54.5 -84.0 19.8 -32.8 -63.1	6 -38.2 -38.2 32.8 -36.7 -44.2	7 -38.2 -38.2 32.7 -36.7 -44.3	7 -38.3 -38.3 32.6 -36.7 -44.3	0.02- 20.02 22.04 20.02 0.02 0.02 0.02 0.02 0	8 -38.4 -38.4 32.2 -36.9 44.4	5 -68.5 -107.3 15.5 -42.5 -77.5	6 -64.6 -99.5 23.2 -38.1 -73.2	6 -64.7 -99.6 23.1 -38.2 -73.2	7 -64.7 -99.6 23.0 -38.2 -73.2	7 -64.7 -99.6 22.9 -38.2 -73.2	7 -64.8 -99.7 22.8 -38.3 -73.3	7 45.4 45.4 38.2 -42.7 -51.4	7 45.5 45.5 38.0 42.8 -51.5	8 -45.5 -45.5 37.8 -42.8 -51.6	8 -45.6 -45.6 37.7 -42.8 -51.6	9 45.6 45.6 37.6 -42.9 -51.6	3.4 Ss = 0.5 Ss = 1.0 Ss = 1.25 Ss = 1.5 Ss = 2.0	2 1.3 1.9 2.1 2.5 3.2	5 1.7 2.3 2.5 2.8 3.6	3 2.0 2.6 2.8 3.2 3.9	L 2.3 2.8 3.1 3.4 4.2	4.4 7.5 5.5 1.5 6.2 6.4 4.4 4.4 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	1 20 25 3.2 3.2 4.0 1 20 25 27 41 48) 3.1 3.7 3.9 4.2 4.9	3.3 3.8 4.0 4.4 5.0	3 3.4 3.9 4.1 4.5 5.1	1 3.5 4.0 4.2 4.6 5.2		3.6 4.1 4.3 4.6 5.3
Zone1 Zc -22.1 -4	1.22-	111 1	- 2.21-	0'CT-	-19.9 -3	-19.9 -3	-22.3 -2	-22.3 -2	-22.4 -2	-22.4 -2	-22.4 -2	-22.5 -2	-31.5 -5	-28.2 -5	-28.2	-28.3 -5	-28.3 -5	-28.3 -5	-31.6 -3	-31.7 -3	- 31.7 -3	- 31.8	-31.8 -3	-37.5 -6	-33.6 -6	-33.6 -6	-33.7 -6	-33.7 -6	-33.7 -6	-37.7 4	-37.7 4	-37.8 -4	-37.8 -4	-37.9 4	3 Ss = 0.4 Ss	1.2	1.5	1.8	2.1	2.2	0.2	3.0	3.1	3.3	3.4		3.5
	lisd) Fauor	-04.2 13.4	COL 10.90-	-59.6 15.3	-59.6 15.2	-59.7 15.1	-27.0 24.4	-27.0 24.3	-27.0 24.1	-27.1 24.0	-27.1 23.9	-27.2 23.8	-78.3 13.4	-72.6 18.0	-72.6 17.9	-72.6 17.9	-72.7 17.8	-72.7 17.6	-33.0 28.9	-33.0 28.8	-33.1 28.6	-33.1 28.4	-33.2 28.3	-95.1 14.2	-88.2 21.0	-88.3 20.9	-88.3 20.9	-88.3 20.8	-88.4 20.7	40.2 34.3	-40.3 34.1	-40.3 33.9	40.4 33.8	-40.4 33.7	Ss = 0.2 Ss = 0	0.8 1.0	1.1 1.3	1.4 1.6	1.7 1.9	7.7 6.7	2.4 2.4	2.6 2.8	2.7 2.9	2.9 3.1	3.0 3.2	3.1 3.3	1
Pressures (ps	7 9007	-40.0	-38.5	-38.6	-38.6	-38.6	-27.0	-27.0	-27.0	-27.1	-27.1	-27.2	-49.9	-47.0	-47.1	-47.1	-47.1	-47.1	-33.0	-33.0	-33.1	1.55-	-33.2	-60.7	-57.3	-57.3	-57.3	-57.3	-57.4	-40.2	-40.3	-40.3	-40.4	-40.4	Ss = 0,1	9.0	6.0	1.2	15	1.1	0.2	2.4	25	2.7	2.8	5.6	
0 di	1 au07	1.22-	10.01	-19.8	-19.9	-19.9	-22.3	-22.3	-22.4	-22.4	-22.4	-22.5	-27.1	-24.3	-24.3	-24.4	-24.4	-24.4	-27.3	-27.3	-27.4	+·/2-	-27.5	-33.1	-29.7	-29.7	-29.8	-29.8	-29.8	-33.3	-33.4	-33.4	-33.5	-33.5	Ss = 0.0	0.3	0.6	0.9	1.2	9 5	10	2.1	23	2.5	2.6	2.7	

APPENDIX B 52 PRESCRIPTIVE PRESSURE TABLES PAGE

										V		S F N	UN RA	I N R	IE Of	۲ ۸																		PR	RES	C	RI	PT	IV	A E	P Pr	P	E		I [Re)) Al	K BL	B 53 ES PAGE
Down	(psf)	13.5	19.8	19.8	19.7	19.6	19.5	32.2	1.25	31.9	217	31.6	16.6	25.1	25.1	25.0	24.9	24.8	41.7	41.6	41.5	C 17	41.1	18.7	285	28.4	28.4	28.3	28.2	47.8	47.7	47.6	47.4	47.3	41.4 5s=3.1	4.8	5.2	5.5	8, 0	6.0	6.3	6.5	6.5	6.6	6.6	6.7	5s = 3.1	4.5	Louisiana*
sf)	Zone 3	-88.5	-82.1	-82.1	-82.2	-82.2	-82.2	-37.4	-31.4	2/2-	375	37.6	-118.1	-109.6	-109.6	-109.6	-109.7	-109.7	-50.1	-50.1	T'05-	2.02-	-50.3	-1371	127.2	-127.3	-127.3	-127.3	-127.4	-58.2	-58.2	-58.3	-58.3	-58.4	-20.4 55=2.5	4.0	4.3	4.6	64 2	7 5	55	5.6	5.7	5.8	6.5	5.9	Ss= 2.5	3.6	ASCE 7-1
ressures (p	Zone 2	-56.4	-53.3	-53.3	-53.3	-53.3	-53.4	4.15-	-31.4	5/5- 275	375	37.6	-75.5	-71.2	-71.2	-71.3	-71.3	-71.3	-50.1	-50.1	1.02-	2.02-	-503	- 87.7	-82.8	-82.8	-82.8	-82.8	-82.9	-58.2	-58.2	-58.3	-58.3	-58.4	-20.4 Ss = 2.0	3.2	3.6	3.9	4.2	4.4	4.8	4.9	5.0	5.1	5.2	5.3	Ss = 2.0	2.9	170 mph
Up	Zone 1	-30.8	-27.6	-27.6	-27.6	-27.7	-27.7	-31.0	-31.0	-31.0	1110-	-31.2	-41.4	-37.1	-37.1	-37.2	-37.2	-37.2	-41.5	-41.6	-41.0	1.14-	-41.7	-48.1	-43.7	-43.2	-43.3	-43.3	-43.3	-48.3	-48.4	-48.4	-48.4	786-	Ss = 1.5	2.5	2.8	3.2	3.4	1.0	4.1	4.2	4.4	4.5	4.6	4.6	5s=1.5	2.2	Basic Wind Speed
Down	(psf)	13.4	17.0	16.9	16.9	16.8	16.6	1.12	0.12	20.8	76.6	26.5	14.9	22.3	22.2	22.1	22.0	21.9	36.6	36.5	30.4	1.95	36.0	17.0	757	25.6	25.5	25.4	25.3	42.7	42.6	42.5	42.3	42.2	SS = 1.25	2.1	2.5	2.8	3.1	2.5	3.7	3.9	4.0	4.1	4.2	4.3	Ss = 1.25	1.8	Ground Snow Loa * This table is n
sf)	Zone3	-72.7	-67.4	-67.4	-67.5	-67.5	-67.5	-30.6	-30.6	-20.7	100-	-30.8	-102.3	-94.9	-94.9	-94.9	-95.0	-95.0	-43.3	-43.3	13.3	4.64	43.5	-1713	-112 5	-112.6	-112.6	-112.6	-112.7	-51.4	-51.5	-51.5	-51.5	-51.6	0.1 = 25	1.9	2.3	2.6	2.8	1.0	3.5	3.7	3.8	3.9	4.0	4.1	Ss= 1.0	1.6	within the state region. The loc wind speeds at
() sanssau	Zone 2	-46.3	-43.6	-43.7	-43.7	-43.7	-43.8	-30.6	-20.0	-30.7	1.00-	-30.8	-65.3	-61.6	-61.6	-61.6	-61.7	-61.7	-43.3	-43.3	43.3	4.04-	43.5	277.5	-73.1	-73.2	-73.2	-73.2	-73.3	-51.4	-51.5	-51.5	-51.5	-51.6	5.0 = 82	1.3	1.7	2.0	23	3 10	2.9	3.1	33	3.4	3.5	3.6	56 = 0,5	1.0	snow loads shoul independantly verifed for the
UpP	Zone 1	-25.1	-22.5	-22.5	-22.6	-22.6	-22.6	-153	- 72.3	-25.4	536	-25.5	-35.7	-32.0	-32.0	-32.1	-32.1	-32.1	-35.9	-35.9	-35.9	-36.0	-36.1	2.04	-38.1	-38.1	-38.2	-38.2	-38.2	42.7	-42.7	-42.7	42.8	42.8	5s = 0.4	1.2	1.5	1.8	2.1	2.5	2.8	3.0	3.1	3.3	3.4	3.5	Ss = 0,4	0.9	specific instal location.
Down	(psf)	13.4	17.0	16.9	16.9	16.8	16.6	1.12	0.12	20.02	7.02	26.5	13.5	19.8	19.8	19.7	19.6	19.5	32.2	32.1	31.9	0.10	31.6	15.5	23.2	23.2	23.1	23.0	22.9	38.3	38.2	38.1	37.9	37.7	5s=0.3	1.0	13	1.6	1.9	77	2.6	2.8	2.9	3.1	3.2	3.3	Ss = 0.3	0.7	
6	Zone 3	-72.7	-67.4	-67.4	-67.5	-67.5	-67.5	-30.6	-30.0	1.05-	1.05-	-30.8	-88.5	-82.1	-82.1	-82.2	-82.2	-82.2	-37.4	-37.4	5/2-	275	-37.6	1075	8 00-	-99.8	8.66-	6'66-	6.99-	45.5	45.6	-45.6	45.6	45./	\$s = 0.2	0.8	1.1	1.4	1.7	20	2.4	2.6	2.7	2.9	0.E	3.1	Ss = 0.2	0.5	
ressures (pe	Zone 2	-46.3	-43.6	-43.7	-43.7	-43.7	-43.8	-30.6	-30.0	-20.7	1.05-	-30.8	-56.4	-53.3	-53.3	-53.3	-53.3	-53.4	-37.4	-37.4	-3/2	275	-37.6	-68.7	-64.8	-64.8	-64.9	-64.9	-64.9	-45.5	-45.6	-45.6	-45.6	-45.7	55= 0.1	0.6	6.0	1.2	51 5	00	2.2	2.4	2.5	2.7	2.8	2.9	Ss= 0.1	0.2	
Upp	Zone 1	-25.1	-22.5	-22.5	-22.6	-22.6	-22.6	-25.3		-25.4	195 5	-25.5	-30.8	-27.6	-27.6	-27.6	-27.7	-27.7	-31.0	-31.0	-31.0	1110-	-31.2	-37.6	33.7	-33.7	-33.8	-33.8	-33.8	-37.8	-37.8	-37.8	-37.9	-32.0	Ss = 0.0	0.3	0.6	0.9	1.2	1 1	1.9	2.1	2.3	2.5	2.6	2.7	Ss = 0.0	0.0	
	toof Pitch	1:12	2:12	3:12	4:12	5:12	6:12	21:/	21:0	21:6	21.11	12:12	1-12	2:12	3:12	4:12	5:12	6:12	7:12	8:12	7116	11-12	12:12	1-12	212	3:12	4:12	5:12	6:12	7:12	8:12	9:12	10:12	12:12	toof Pitch	1:12	2:12	3:12	4:12	21:5	7:12	8:12	9:12	10:12	11:12	12:12		-	
-	u.			Ex	po	sure	e Ca	iteg	gor	yВ					E	фo	sur	e C	ate	gor	y C					E	кро	sur	e C	ate	gor	y D		-	E.			-	Do	wn	Slop	pe							
													-	Up	a	nd	Do	wп	(p	sf)																		Si	de	Loa	d (psf)			1	Late	ral	

SFN SUN FRAME MICROR

Roof Pitch to Angle Conversion

	Pitch	Angle		
	12:12	45°]
	11:12	42.5°		
	10:12	39.8°	Channel	
////	9:12	36.9°	Steep	
1///	8:12	33.7°		
/////	7:12	30.3°		
11////	6:12	26.6°		Still walkable
11////	5:12	22.6°	Moderate	
	4:12	18.4°		Standard roof pitch
	3:12	14.0°		Typical in southern climates
	2:12	9.5°	Slight	Low pitch roof
	1:12	4.5°		
	0:12	0 °	Flat	

Dead Load Calculation

The Prescriptive Pressure Tables and U-Building include service dead loads ranging from 2.1 to 3.8 psf and include the wiehgt of the SFM system and module.

To calculate the dead load of your system, please refer to Appendix H - Technical Data Sheets and the project specific module specification sheet. If your loads fall outside the range listed aboe, please use the Analytical Method in this guide for analysis.

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

Sample Calculation (ASCE 7-05)

1. Obtain Project Location

Allentown, NJ

2. Contact local AHJ (Authority Having Jurisdiction) to determine Current Adopted Building Code (City web page will either list adopted code or list contact information for Building/Engineering Department)

Assume ASCE7-05 for sample calculation

3. Determine if there are any local amendments to the Current Adopted Building Code (City web page will generally list local amendments)

Assume no local amendments for sample calculation

Determine Occupancy Category utilizing Table 1-1 (pg. 3)
 Occupancy Category II

Step 1: User Inputs (ASCE 7-05)

5. Determine Roof Height

10' - 0" to top of wall & 16'-2" to ridge

6. Determine Roof Angle (degrees)

5/12 - 22.62 degrees

7. Determine Basic Wind Speed utilizing Figure 6-1 continued (pg. 33)

100 mph

8. Determine Wind Exp. Category utilizing definitions for Surface Roughness Categories found in sections 6.5.6.2 & 6.5.6.3 (pg 25-26) *Exposure C*

APPENDIX E57SAMPLE CALCULATION (ASCE 7-05)PAGE

9. Determine roof zones utilizing Figure 6-3 (pg. 41)

a = 10% of least horizontal dimension = 24ft x 0.1 = 2.4 ftor a = 0.4 x h = 0.4 x 10ft = 4 ftwhichever is smaller but not less than either 4% of least horizontal dimension or 3 ft

- 10. Determine Ground Snow Load utilizing Figure 7-1 continued (pg. 85) *25 psf*
- 11. Determine the mapped MCE spectral response acceleration at short periods, Ss utilizing figure 22-1 continued (pg. 211) *0.30 g*
- 12. Determine the minimum uniform distributed Live Load utilizing Table 4-1 (continued) (pg. 13) *20 psf*
- Confirm User Inputs by utilizing DesignCriteriabyZIP program (output attached)
 Wind Speed 100mph, Ground Snow Load 25 psf, Ss 0.293
- 14. Module Manufacturer/Type *TRINA TSM – PA05.08 - 260*
- 15. Module Length, Module Width, Module Weight *64.96 in, 37.05 in, 41 lbs*

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

Step 2: Wind Pressure (ASCE 7-05, Chapter 6)

16. Calculate Effective Wind Area:

L = 64.96in/(12in/ft) = 5.41 ftW = 37.05in/(12in/ft) = 3.09 ftArea = $(5.41\text{ft} \times 3.09\text{ft})/4 = 4.18 \text{ ft}^2$

17. Per section 6.5.12.4 (pg. 28), determine External Pressure Coefficients, GCpp and GCpn utilizing Figure 6-11C (pg. 57)

Zone 1: GCpp = -0.9 GCpn = 0.5 Zone 2:

GCpp = *-1.7* GCpn = *0.5*

Zone 3:

GCpp = *-2.6* GCpn = *0.5*

Determine Velocity Pressure Coefficient, K_z utilizing Table 6-3 (pg. 79)
 0.85

APPENDIX E59SAMPLE CALCULATION (ASCE 7-05)PAGE

- 19. Determine Topographic Factor, K_{zt} utilizing Figure 6-4 (cont'd) (pg. 46)
 1
- 20. Determine Directionality Factor, K_d utilizing Table 6-4 (pg. 80)
 0.85
- Determine Wind Importance Factor utilizing Table 6-1 (pg. 77)
 1
- 22. Calculate Velocity Pressure, $q_z = q_h$ utilizing equation (6-15) in section 6.5.10 (pg. 27)

 $q_h = 0.00256K_zK_{zt}K_dV^2I_w = 0.00256(0.85)(1.0)(0.85)(100)^2(1.0) = 18.5 \text{ psf}$

23. Calculate Design Wind Pressures, Pp(positive) and Pn(negative) utilizing equation (6-22) in section 6.5.12.4.1 (pg. 28)

Zone 1:	
	Pp = q _h (GCpn) = 18.5(0.5) = <i>9.25 psf = 10 psf min</i> Pn = q _h (GCpp) = 18.5(-0.9) = <i>-16.7 psf</i>
Zone 2:	
	Pp = q _h (GCpn) = 18.5(0.5) = <i>9.25 psf = 10 psf min</i> Pn = q _h (GCpp) = 18.5(-1.7) = <i>-31.5 psf</i>
Zone 3:	
	Pp = q _h (GCpn) = 18.5(0.5) = <i>9.25 psf = 10 psf min</i>
	Pn = q _b (GCpp) = 18.5(-2.6) = -48.1 psf

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

Step 3: Dead Load

24. Determine Racking System Dead Load (See Appendix D) *Min = 2.14 psf Max = 3.85 psf*

Step 4: Snow Load (ASCE 7-05, Chapter 7)

- 25. Ground Snow Load, p_g from Step 1 25 psf
- 26. Determine Exposure Factor, C_e utilizing Table 7-2 (pg. 92)
 1
- 27. Determine Thermal Factor, Ct utilizing Table 7-3 (pg. 93)*1*
- 28. Determine Snow Importance Factor, I_s utilizing Table 7-4 (pg. 93)
 1
- 29. Calculate Flat Roof Snow Load, p_f utilizing equation (7-1) in section 7.3 (pg. 81)

 $p_f = 0.7C_eC_t Ip_g = 0.7(1.0)(1.0)(1.0)(25) = 17.5 \text{ psf}$

APPENDIX E61SAMPLE CALCULATION (ASCE 7-05)PAGE

- Determine Slope Factor, C_s utilizing Figure 7-2a
 0.73
- 31. Calculate Sloped Roof Snow Load, p_s utilizing equation (7-2) in section 7.4 (pg. 81)

p_s = C_sp_f = (0.729)(17.5) = *12.76 psf*

Step 5: Seismic Load (ASCE 7-05, Chapters 12 & 13)

- 32. Amplification Factor, a_p utilizing AC428, section 3.1.3.3 & ASCE 7-05 Table 13.6-1 (pg. 149)
 1
- 33. Determine Component Response Modification Factor, R_p utilizing AC428 Table 3.1.3.3 & ASCE 7-05 Table 13.6-1 (pg. 149)
 1.5
- Mapped MCE spectral response acceleration at short periods, S_s from Step 1
 0.3
- 35. Determine Site Coefficient, F_a utilizing Table 11.4-1 *1.56*
- 36. Calculate the MCE Spectral Response Acceleration for Short Periods, S_{MS} utilizing equation (11.4-1) in section 11.4.3 (pg. 115)

$$S_{MS} = F_a S_s = (1.56)(0.3) = 0.468$$

37. Calculate the Design Earthquake Spectral Response Acceleration Parameter at Short Periods, S_{DS} utilizing equation (11.4-3) in section 11.4.4 (pg. 115)

$$S_{DS} = 2/3S_{MS} = (2/3)(0.468) = 0.312$$

APPENDIX E
SAMPLE CALCULATION (ASCE 7-05)62
PAGE

- From Step 3, Effective Seismic Weight, W_p
 3.85 psf
- 39. Determine Seismic Importance Factor, I_p utilizing section 13.1.3 (pg. 143)
 1
- 40. Determine height in structure of point of attachment of component with respect to the base, z utilizing section 13.3.1 (pg. 145) *15.5 ft*
- 41. Determine average roof height of structure, h utilizing section 13.3.1 (pg. 145)

15 ft

- 42. Calculate Horizontal Seismic Design Force, F_{ph} utilizing equation (13.3-1) in section 13.3.1 (pg. 144)
 - $F_{ph} = ((0.4a_pS_{DS}W_p)/(R_p/I_p)) \times (1+2(z/h))$
 - = ((0.4(1.0)(0.312)(3.85))/(1.5/1.0)) x (1+2(1))
 - = 0.961 psf

is not required to be taken as greater than (13.3-2)

$$\begin{array}{ll} {\sf F}_{\sf ph} & = 1.6 {\sf S}_{\sf DS} {\sf I}_{\sf p} {\sf W}_{\sf p} \\ & = 1.6 (0.312) (1.0) (3.85) \\ & = \textit{1.922 psf} \\ & Shall \ not \ be \ taken \ as \ less \ than \ (13.3-3) \\ {\sf F}_{\sf ph} & = 0.3 \ {\sf S}_{\sf DS} {\sf I}_{\sf p} {\sf W}_{\sf p} \end{array}$$

= 0.3(0.312)(1.0)(3.85) = 0.360 psf

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

- 43. Calculate Vertical Seismic Design Force, F_{pv} utilizing equation (12.4-4) in section 12.4.2.2 (pg. 126) = $0.2S_{DS}D$
 - = 0.2(0.312)(3.85) = 0.240 psf
- 44. Summarize Calculated Design Forces

Wind:	Zone 1 = 10 psf (down)
	Zone 1 = -16.7 psf (up)
	Zone 2 = 10 psf (down)
	Zone 2 = -31.5 psf (up)
	Zone 3 = 10 psf (down)
	Zone 3 = -48.1 psf (up)
Dead:	Min = 2.14 psf
	Max = 3.85 psf
Snow:	12.76 psf
Seismic:	Horizontal = 0.961 psf Vertical = 0.241 psf

45. Calculate *Local* Horizontal (parallel to module face) and Vertical (perpendicular to module face) Components of Design Forces at 22.62 Degree Roof Tilt

Wind: (*Note: wind design forces already take into account roof tilt and represent vertical loading perpendicular to the module surface*)

	Vertical Down:	Zone 1, 2 & 3 = 10psf
Dead	Vertical Up:	Zone 1 = -16.7psf, Zone 2 = -31.5psf, Zone 3 = -48.1psf
Deau.	Vertical Down:	Min = 2.14 x cosine (22.62) = 1.98psf Max = 3.85 x cosine (22.62) = 3.55psf
c	Horizontal:	Min = 2.14 x sine (22.62) = 0.82psf Max = 3.85 x sine (22.62) = 1.48psf
Snow:	Vertical Down:	12.76 x cosine (22.62) x cosine (22.62) = 10.87psf
Seismi	Horizontal:	12.76 x sine (22.62) = 4.91psf
Jeisini	Vertical Down:	0.241 x cosine (22.62) + 0.961 x sine (22.62) = 0.59pdf
	Horizontal:	0.241 x sine (22.62) + 0.961 x cosine (22.62) = 0.98psf

46. Identify Controlling Load Combination for Both Vertical (up and down) and Horizontal Directions

		Vertical (psf)	Horizontal (psf)
		Zone 1, Zone 2, Zone 3	
1)	D	3.55	1.48
2)	D + S	15.3	6.39
3)	$D + W_{up}$	-14.72, -29.52, -46.12	0.82
4)	D + W _{down}	13.6	1.48
5)	D + 0.75W _{down} + 0.75S	19.2	5.16
6)	D + 0.75(0.7E) + 0.75S	12.0	5.68
7)	D + 0.7E	3.96	2.17
8)	0.6D + W _{up}	-15.51, -30.31, -46.92	0.49
9)	0.6D + W _{down}	12.1	0.89
10)	0.6D + 0.7E	2.54	1.57

47. Create Initial Array Layout 3 x 3 Landscape Array

8-0		3	40	MA.	05	2.6	80	200	200	80	10	M		R)R	AI	22	60	1.6	6.9	m	10	20	64	3		99	28	16	40	06	2 6	S	A	WP WP		E			<u>~</u>					()			1.5	-1	East Coa
		2	58 2	52	5.9 2	1	5	1 4	1 .	1	1	1	1	2.6 2	27 2	2 1.2	2 17	2 1 2	2.8 1	8.4 2	2 4 5 1 2	2 2 2		5 2 4	1	8 2	2 6 2	29 2	2 67	3.0 2	1 1 1	2 0 0	1 2	33	33 2	15 34	-	-	-	-		7	-		. 0	2 00	- 40	2.5 56	9	(meaium si
100	ľ	×	4	¥	4	¥.	41	2.4		2	-2	2	9	Ģ	9	Ģ	ġ i	¢.	ġ	2	14 1	9 8	2 8	1 12-	r.	-1-	1-	-7.	17	1	9	1 1	1	14	-35	0 S& e	4	-	CE I	-			nd 0	6 00	0 00		-	0 36 -	m	ASCE 7
Pressing 2018-2		-32.0	-30.2	-30.2	-30.2	505-	8			-212	-21.2	-21.2	-21.3	43.0	-40.5	9.05	9.04	9	-40.7	-28 v	-28.4	200-	20.0	-78.6	0.05-	-47.2	-47.2	-47.2	47.3	473	-33.1	0.65-	2 55-	33.3	-33.3	58 + 2	38	51	62	6.6	17	4	Q 1	81	75	1	12	54=2	52	100 mp
20m 1		-17.2	-15.4	-15.4	-15.4	-155	-155	A 21-	417-	-175	-175	-175	-17.6	-23.3	6'02-	6'02-	602-	6.02-	-21.0	-235	-235	0.62-	23.6	182-	-27.2	-24.4	A BU	-24.A	-245	-24.5	-27 A	212-	215	-27.6	-27.6	8=15	32	46	5.6	6.0	3 3	2	2 :	12	10	2 4	6	8=1.5	22	Real: Wind Sp
Down		26.2	24.9	23.4	20.5	19.2	18.0	10.0	10.0	17.6	16.8	16.5	16.4	26.2	25.4	23.9	21.0	19.7	18.5	23.7	227	27.1	22.0	21.9	297	26.9	25.4	21.5	20.4	19.2	26.0	2.0	72	25.6	25.4	Se1.75 S	2.9	43	5.4	5.7	3	00	000	20	67	-	64	8=1.25	1.8	Secure Snew * This table is inclusive of all
Done 3		414	-38.3	-38.4	-38.A	18.4	192	2/1-	717-	-17.3	-17.3	-173	-17A	-58.4	-54.2	242	-242	2	25	-245	-245	0.60-	24.6	747	18	-64.4	644	-64.4	4.10	-945	-87	100	20.2	233	-29.A	8=1.0	28	41	52	5.6	3	-	00	10		24	3	St=1.0	1.6	within the sta region. The
Pressures (pd		-26.1	-24.6	-24.6	-24.7	-24.7	1.42	211-	7/1-	-173	-17.3	-173	-17A	-37.1	-35.0	35.0	-35.0	18	-92.1	-245	-245	2.00-	-24.6	747	242	-41.6	-41.7	113	-41.7	-41.8	287	10.	203	503	A St.	20 = 92	23	3.7	5.0	5.4	9	0.0	0.0	0.0	1		13	Sc=05	1.0	snow loads sho independar verifed for
2014-1		-14.0	-12.4	-125	-125	-125	-12.6	1.91-	7-61-	-14.2	-14.2	-14.3	-14.3	0.02-	-17.9	-17.9	-18.0	-18.0	-18.0	-202	E OZ-	5 M-	PW-	-20 A	-24.0	-215	-215	-215	-215	-21.6	-24.1	240	243	-24.3	-24.3	80-04	22	3.7	5.0	5.4	3	4.0	0	0 9			3	St=04	0.9	specific ins location
Down		28.2	24.9	23.4	20.5	19.2	18.0	10.01	10.01	17.6	16.8	16.5	16.4	28.2	24.9	23.4	20.5	19.2	18.0	21.8	20.8	19.6	10.5	19.4	28.2	25.8	24.3	205	19.3	18.2	23.8	28.2	23.1	23.0	22.9	Se - 0.3	2.1	3.7	5.0	5.4	6.0	4.0					13	£0 = 95	0.7	
() Zone3		414	-38.3	-38.4	-38.4	-38.4	-385	217.	7/1-	-173	-173	-173	-174	-505	-468	468	-469	699	469	-211	-211	217-	C1C.	-213	519	-570	-57.0	-574	-57.1	-57.1	-258	807-	-259	-259	-26.0	Se = 0.2	2.0	3.7	5.0	5.4	9		0.0				13	\$6 = 0.2	0.5	
Zone 2		-26.1	-24.6	-24.6	-24.7	-24.7	24.7	7/1-	7/12	-173	-173	-173	-174	320	-30.2	-30.2	-302	303	303	-211	211	212	212	213	195	-36.8	-36.9	-36.9	-36.9	37.0	-258	807	259	-259	-26.0	Sec.0.1	2.0	3.7	5.0	5.4	3	20	0.0	0.4	10		13	10=35	0.2	
Zone 1		-14.0	-12.4	-125	-125	-125	-12.6	1.45	741	-14.2	-14.2	-143	-143	47.2	-15.4	-15.4	-15A	-155	-155	-174	47.4	2/1-	175	476	-211	-189	-18.9	-19.0	-19.0	-19.0	-213	214	-214	215	-215	Sc= 0.0	2.0	3.7	5.0	5.4	9.9	5.4	0.0	0.0	9.9		19	Ss = 0.0	0.0	
Road Pach-		1:12	212	3.12	412	512	612	212	71:0	9:12	10:12	11:12	12:12	112	212	3:12	412	512	612	712	8:12	10.12	11-12	12:12	112	212	3.12	4.12	512	6:12	712	212	10:12	11:12	12:12	Rod Pitch	112	2:12	3:12	4:12	512	212	211	912	10:12	11:12	12:12			
1-	Ľ	_	-	Exp	pos	ure	e Ca	teg	on	γВ		-	T			Exp	oos	ure	Ca	rte	gon	10	-	-	L		Ex	(pos	sure	e Ca	ateg	ory	D	-	1	-	-		_	Do	wn	slo	ope			-				

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

49. Determine System Application Rules

Pull loads form page Roof Zone 1:	<u>88.</u>	Compare to the table on page 26.													
Down =	19.2 psf	Rule 1 controls													
Up =	-15.5 psf	Rule 1 controls	Since Rule 1 controls; use the following dimensions;												
Down Slope =	6.0 psf	Rule 1 controls	Overhang Maximum =	24"	(MicroRail and Trim Rail										
Lateral =	0.7 psf	Rule 1 controls	Span Maximum =	72"	dimensions in roof zone 1)										
Pull loads form page	<u>88.</u>	Compare to the table on page 26.													
Roof Zone 2:		<u>Note</u> : Rule 3 controls for the MicroRail dimensions And													
Down =	19.2 psf	Rule 1 controls	Rule 1 controls for Trim Rail	dimen	sions.										
Up =	-30.3 psf	See note													
Down Slope =	6.0 psf	Rule 1 controls	Overhang Maximum =	18"	(MicroRail dimensions in										
Lateral =	0.7 psf	Rule 1 controls	Span Maximum =	48"	roof zone 2)										
			Overhang Maximum =	24"	(Trim Rail dimensions in										
			Span Maximum =	72"	roof zone 2)										
Pull loads form page	<u>88.</u>	Compare to the table	<u>e on page 26.</u>												
Roof Zone 3:		<u>Note:</u> The uplift pressure is greater than those listed in													
Down =	19.2 psf	Rule 1 controls	rules 1, 2, & 3 for Both the I	MicroRa	ail and Trim Rail										
Up =	-46.9 psf	See note	dimensions.												
Down Slope =	6.0 psf	Rule 1 controls													
Lateral =	0.7 psf	Rule 1 controls	Overhang Maximum =	10"	(MicroRail and Trim Rail										
			Span Maximum =	32"	dimensions)										

APPENDIX E SAMPLE CALCULATION (ASCE 7-05) PAGE

- 51. Calculate Maximum Point Load for Each Support Type (Area of 1 Panel = 16.71sf)
- 52. Corner Support (1/4 Panel Tributary Area)

•	Maximum Downward Point Load Acting Perpendicular to the Roof Surface:	19.2psf x (.25 x 16.71) =	80 lbs
•	Maximum Upward Point Load Acting Perpendicular to the roof surface (Zone 1):	-15.5psf x (.25 x 16.71) =	-65 lbs
•	Maximum Shear Point Load Acting Parallel to the roof surface:	6.0psf x (.25 x 16.71) =	26 lbs
53.	Edge Support (1/2 Panel Tributary Area)		
	Maximum Downward Point Load Acting Perpendicular to the Roof Surface:	19.2psf x (.50 x 16.71) =	160 lbs
•	Maximum Upward Point Load Acting Perpendicular to the roof surface (Zone 1):	-15.5psf x (.50 x 16.71) =	-130 lbs
•	Maximum Shear Point Load Acting Parallel to the roof surface:	6.0psf x (.50 x 16.71) =	52 lbs
54.	Interior Support (1 Panel Tributary Area)		
	Maximum Downward Point Load Acting Perpendicular to the Roof Surface:	19.2psf x (1 x 16.71) =	321 lbs
•	Maximum Upward Point Load Acting Perpendicular to the roof surface (Zone 1):	-15.5psf x (1x 16.71) =	-259 lbs
•	Maximum Shear Point Load Acting Parallel to the roof surface:	6.0psf x (1x 16.71) =	101 lbs

NOTE TO BASE STRUCTURE ENGINEER: Refer to Section C7.8 of both ASCE 7-05 and ASCE 7-10 for application of solar loading to base structure

SUNFRAME MicroRail - 2" Assembly

No Intersection (North Row)

(See System Layout Rules - Connection/Attachment Rules 1 & X)

Direction	Allowable Loads (lbs)	Design Loads (lbs)
X +/- Lateral	62	94
Y + Tension	956	1446
Y - Compression	2402	3633
Z + Down Slope	57*	86*

- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents.
- Values represent the allowable and design load capacity of a single 2" MicroRail assembly to retain a module(s) in the direction indicated
- Resistance factors and safety factors are determined according to Part 1 Appendix 1 of the 2015 Aluminum Design Manual

Assembly Part Numbers:	250020U
Extruded Components material:	6005A-T61, 6061-T6
Ultimate Tensile:	38ksi
Yield:	35ksi
Finish:	Dark Anodized Cap
Weight :	Cap .604 lbs (274g)

2 Modules Vertical (Interior Row)

(See System Layout Rules - Connection/Attachment Rule 2v & X)

Direction	Allowable Loads (lbs)	Design Loads (lbs)
X +/- Sliding	62	94
Y + Tension	1626	2459
Y - Compression	1979	2993
Z +/- Transverse	809*	1224*

*System Down Slope load capacity = sum of north row load + interior load (or + trim rail load on single row assembly)

SUNFRAME MicroRail - 8" Assembly

2 Modules (North Row)

(See System Layout Rules - Connection/Attachment Rule 5)

Direction	Allowable Loads (lbs)	Design Loads (lbs)
X +/- Lateral	278	421
Y + Tension	787	1191
Y - Compression	1321	1999
Z + Down Slope	451	682

- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents.
- Values represent the allowable and design load capacity of a single 8" MicroRail assembly to retain a module(s) in the direction indicated
- Resistance factors and safety factors are determined according to Part 1 Appendix 1 of the 2015 Aluminum Design Manual

Assembly Part Numbers:	250030U
Extruded Components material:	6005A-T61, 6061-T6
Ultimate Tensile:	38ksi
Yield:	35ksi
Finish:	Dark Anodized Cap
Weight :	1.413 lbs (641g)

4 Modules Max (Interior Row) (See System Layout Rules - Connection/Attachment Rule 5)

Direction	Allowable Loads (lbs)	Design Loads (lbs)
X +/- Sliding	278	421
Y + Tension	3166	1963
Y - Compression	5446	3677
Z +/- Transverse	875	1324

SUNFRAME MicroRail - 6.5" Splice Assembly

2 Modules (North Row) (See System Layout Rules - Connection/Attachment Rule 2h)

Direction	Allowable Loads (ft-lbs)
Y + Bending	429
Y - Bending	357

- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents.
- Values represent the allowable and design load capacity of a single 6.5" MicroRail Splice to retain a module(s) in the direction indicated
- Resistance factors and safety factors are determined according to Part 1 Appendix 1 of the 2015 Aluminum Design Manual

Assembly Part Numbers:	250010U
Extruded Components material:	6005A-T61, 6061-T6
Ultimate Tensile:	38ksi
Yield:	35ksi
Finish:	Dark Anodized Cap
Weight	0.936 lbs (425g)

4 Modules Max (Interior Row) (See System Layout Rules - Connection/Attachment Rule 3 & 4)

Direction	Allowable Loads (ft-lbs)
Y + Bending	589
Y - Bending	565

SUNFRAME MicroRail - Trim Rail

APPENDIX F TECHNICAL DATA SHEET PAGE

- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents.
- Values represent the allowable and design load capacity of a single L-Foot capture connection to retain a module(s) in the direction indicated
- Resistance factors and safety factors are determined according to Part 1 Appendix 1 of the 2015 Aluminum Design Manual

Trim Rail	
Part Numbers:	250100U - Trim Rail 250110U - Trimrail Module Clip
Extruded Components material:	6005A-T61, 6061-T6
Ultimate Tensile/Yield:	38ksi/35ksi
Finish:	Trim Rail: Dark Anodized
Weight	0.94 lbs/ft (426 g/ft) - Trim Rail
	0.160 lbs(73g) - Trimrail Module Clip
Trim Splice	
Part Number:	250120U
Weight	0.436 lbs(198g)

Load Testing Results

Direction	Allowable	Design Load (lbs)
Z + Down Slope	502	760
Y + Tension	999	1512
Y - Compression	672	1017

Trim Roof Attachment Assembly

Part Number:	004200D
Weight	0.439 lbs(199g)